Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.7 T with a cryogenic coil and advanced offline pre- and post-processing. This approach achieves a signal-to-noise ratio sufficient to reliably quantify 19 distinct metabolites in a volume as small as 0.7 μL within the mouse brain. The resulting high spatial resolution and spectral quality enable the identification of distinct metabolite fingerprints in small, specific regions, as demonstrated by characteristic differences in N-acetylaspartate, glutamate, taurine, and myo-inositol between the motor and somatosensory cortices. We demonstrated a decline in taurine and glutamate in the primary motor cortex between 5 and 11 months of age, against the stability of other metabolites. Further exploitation to cortical layer-specific metabolite fingerprinting of layer I-III to layer VI-V in the primary motor cortex, with the latter showing reduced taurine and phosphoethanolamine levels, demonstrates the potential of this pipeline for detailed in vivo metabolite fingerprinting of cortical areas and subareas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.16303 | DOI Listing |
J Neurochem
January 2025
Core Facility Small Animal MRI, Ulm University, Ulm, Germany.
Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.
View Article and Find Full Text PDFFood Chem
January 2025
Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China. Electronic address:
Polymethoxyflavones (PMFs) from citrus peel, including permethoxylated PMFs and hydroxylated PMFs (OH-PMFs), have attracted much attention due to their potential strong biological activities. However, characterization of PMFs through LC-MS analysis was challenged due to numerous substituent positions in flavone. In this study, twelve PMF standards were analyzed by UPLC-QTOF-MS/MS to present fingerprint retro-Diels-Alder (RDA) ions ([B], A and B(C) associated ions).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Grupo Metabolômica, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.
Metabolomics is the area of research, which strives to obtain complete metabolic fingerprints, to detect differences between them and to provide hypothesis to explain those differences (Schripsema J, Dagnino D, Handbook of chemical and biological plant analytical methods. Wiley, New York, 2015). However, obtaining complete metabolic fingerprints is not an easy task.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece.
The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
Hepatocellular carcinoma (HCC) is a common malignancy and generally develops from liver cirrhosis (LC), which is primarily caused by the chronic hepatitis B (CHB) virus. Reliable liquid biopsy methods for HCC screening in high-risk populations are urgently needed. Here, we establish a porous silicon-assisted laser desorption ionization mass spectrometry (PSALDI-MS) technology to profile metabolite information hidden in human serum in a high throughput manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!