Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism. We assessed the associations between AE and blood lipids and dyslipidemia prevalence using the restricted cubic spline models. The regression coefficients (β) and the 95% CI of total cholesterol for the 75th and 95th percentiles of the exposure were 0.23 mmol/L (95% CI: 0.15, 0.30) and 0.25 mmol/L (95% CI: 0.18, 0.32). We also found AE was positively associated with dyslipidemia. Participants who were female or who had low incomes exhibited more pronounced associations. Our research showed that exposure to AE was significantly associated with serum lipids. These novel, valuable findings are useful to inform policymakers to estimate the risks to human health from anthropogenic heat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2025.2454363 | DOI Listing |
Int J Environ Health Res
January 2025
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Storage of anthropogenic heat in the oceans is spatially inhomogeneous, impacting regional climates and human societies. Climate models project enhanced heat storage in the mid-latitude North Pacific (MNP) and much weaker storage in the tropical Pacific. However, the observed heat storage during the past half-century shows a more complex pattern, with limited warming in the MNP and enhanced warming in the northwest tropical Pacific.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
California State University, Los Angeles, 5151 State University Drive ST 305, Los Angeles, CA 90032, USA. Electronic address:
Marine debris such as plastic, metal, and rubber, is a significant source of anthropogenic waste pollution in oceanic waters. Debris continues to be found along Southern California's coastlines and poses serious risks to biodiversity and ecosystem health through entrapment, ingestion, and entanglement. One particular species that drops eggs in the South Bay, particularly in the Palos Verdes peninsula, is the California horn shark (Heterodontus francisci).
View Article and Find Full Text PDFFront Sports Act Living
December 2024
Faculty of Business Management & Social Sciences, Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany.
Introduction: While the impact of anthropogenic climate change on sports and the subsequent need for adaptation to evolving climatic conditions are acknowledged, there remains a notable paucity of scientific inquiry within the realm of sports and sports event studies specifically addressing climate change and its ramifications for event planning and management. Existing studies predominantly stem from health, medical, weather and climate science and mostly focus on mega-events and elite athlete contexts. Moreover, they often only focus on one specific impact (e.
View Article and Find Full Text PDFSci Rep
January 2025
Safety Technology Center of Guizhou Coal Mine Safety Supervision Bureau, Guiyang, 550081, Guizhou, China.
Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!