AI Article Synopsis

Article Abstract

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights. VGG16, known for its depth and high performance, is utilized for this purpose. The study demonstrates the model's potential for precise and effective diagnosis by examining how well it can differentiate between areas of normal brain tissue and cancerous regions, leveraging both MRI and microscopy data. We describe in full the pre-processing actions taken to improve the quality of input data and maximize model efficiency. A carefully selected dataset, incorporating diverse tumor sizes and types from both microscopy and MRI sources, is used during the training phase to ensure representativeness. The proposed modified VGG19 model achieved 98.81% validation accuracy. Despite good accuracy, interpretation of the result still questionable. The proposed methodology integrates explainable AI (XAI) for brain tumor detection to interpret system decisions. The proposed study uses a gradient explainer to interpret classification results. Comparative statistical analysis highlights the effectiveness of the proposed explainer model over other XAI techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24809DOI Listing

Publication Analysis

Top Keywords

brain tumor
12
gradient explainer
8
tumor detection
8
microscopy magnetic
8
magnetic resonance
8
resonance imaging
8
imaging mmri
8
deep learning
8
tumor
5
vgx vgg19-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!