Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary. The method is validated through in silico and in vivo experiments on six healthy subjects, comparing results with standard MRF methods and literature values.
Results: The proposed method shows strong correlation and agreement with standard MRF methods for T and T values. High-resolution maps provide detailed visualizations of CBV and microvascular structures, highlighting differences in white matter (WM) and gray matter (GM) regions. The measured GM/WM ratio for CBV is 1.91, consistent with literature values.
Conclusion: This contrast-free bSSFP-based MRF method offers an new approach for quantifying CBV, vessel radius, and relaxometry parameters. Further validation against DSC imaging and clinical studies in pathological conditions is warranted to confirm its clinical utility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.30434 | DOI Listing |
Magn Reson Med
January 2025
Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France.
Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.
Z Med Phys
January 2025
Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.
Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.
Mater Horiz
January 2025
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Germany.
Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!