Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Published: November 2017

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge. Here, we report the development, application, and validation of a self referencing (, oscillating) NO microelectrode for field studies of biological cells and tissues. The durable microelectrode is based on a hybrid nanomaterial composed of nanoceria, reduced graphene oxide and nanoplatinum and is intended for field use. One of the main focuses was to address the common pitfall of high overpotential through use of hydrophobic, and size/charge-selective materials in a thin film coated on top of the nanocatalyst sensor. The sensitivity (0.95 ± 0.03 pA nM), response time (1.1 ± 0.1 s), operating potential (+720 mV), and selectivity of the nanomaterial-modified microelectrode are similar to laboratory microelectrode designs, enabling studies of NO flux in field studies. NO efflux was first measured from chitosan and alginate polymers in abiotic studies, and a deterministic model used to determine the effective diffusion coefficient for each polymer composite. To demonstrate the practicality of the sensor, NO flux was quantified in three model organisms with known NO pathways, including: bacteria, plant, and an invertebrate animal. For each organism, an established hypothesis was validated based on NO flux measurement and the results confirm data collected using standard analytical techniques. The sensor can be used to expand our fundamental knowledge of NO transport by facilitating field experiments which are not possible with standard techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ay01964eDOI Listing

Publication Analysis

Top Keywords

field studies
12
real time
8
nitric oxide
8
flux field
8
field
5
studies
5
microprofiling real
4
time nitric
4
flux
4
oxide flux
4

Similar Publications

Background: Globally, adolescent mothers are at increased risk for postpartum depression (PPD). In Kenya, 15% of adolescent girls become mothers before the age of 18. While social support can buffer a mother's risk of PPD, there are gaps in knowledge as to whether-and which types-of social support are protective for adolescent mothers in Kenya.

View Article and Find Full Text PDF

Healthcare performance of leprosy management in peripheral health facilities of Dhanusa and Mahottari, Nepal.

BMC Health Serv Res

January 2025

Department of Health Services, Epidemiology and Disease Control Division, Ministry of Health and Population, Kathmandu, Nepal.

Background: The global elimination of leprosy transmission by 2030 is a World Health Organization (WHO) target. Nepal's leprosy elimination program depends on early case diagnosis and the performance of health workers and facilities. The knowledge and skills of paramedical staff (Leprosy Focal Person, LFP) and case documentation and management by health facilities are therefore key to the performance of health care services.

View Article and Find Full Text PDF

Lewy body diseases and the gut.

Mol Neurodegener

January 2025

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.

Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation.

View Article and Find Full Text PDF

Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.

View Article and Find Full Text PDF

Background: The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!