Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).
Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included. A network meta-analysis was performed, using standardized mean differences (SMDs) and 95% confidence intervals (CIs) to assess the effects of each system on flexural strength.
Results: A total of 11 in vitro studies were included, with 9 studies contributing to the network meta-analysis. SLS (77.70%) and SLA (63.82%) systems ranked the highest in terms of flexural strength, while DLP ranked the lowest (23.40%). Significant differences were observed between SLS and multiple other systems, including DLP (-14.58, CI: -22.67 to -6.48), LCD (-14.65, CI: -25.54 to -3.59), FDM (-12.87, CI: -23.30 to -2.52), SLA (-11.41, CI: -18.74 to -4.01), and DLS (-10.89, CI: -21.23 to -0.67). Direct comparisons were limited, with DLP vs. SLA having the most data. Other comparisons were predominantly indirect.
Conclusions: SLS and SLA systems exhibited superior flexural strength compared to other systems. However, the limited number of direct comparisons and reliance on indirect evidence suggest that further research is necessary to confirm these findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12903-025-05470-z | DOI Listing |
BMC Oral Health
January 2025
Department of Restorative Dentistry, Recep Tayyip Erdoğan University, Rize, Turkey.
Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).
Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.
ACS Nano
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
To reduce the environmental impact of plastics, an increasing number of high-performance sustainable materials have emerged. Among them, wood-based high-performance structural materials have gained growing attention due to their outstanding mechanical and thermal properties. Here, we introduce phosphate groups onto the wood veneers for surface nanofibrillation, effectively altering both the molecular structure and surface morphology of wood, which enhances the interactions between wood veneers and endows the wood with excellent fire resistance properties.
View Article and Find Full Text PDFInt Endod J
January 2025
Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq.
Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.
Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.
Sci Rep
January 2025
Department of Civil Engineering , University of Engineering and Technology Peshawar, Peshawar, Pakistan.
For millennia mud has been utilized to make brick for the construction of both residential as well as architectural purposes. However, concerns regarding their vulnerability to different kinds of hazards due to their weak mechanical properties and durability have emerged. This study addressed the global challenge of developing sustainable and affordable construction materials, particularly in resource-constrained regions.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen.
Purpose: This systematic review evaluated the effect of different printing orientations on the physical-mechanical properties and accuracy of resin denture bases and related specimens.
Study Selection: Utilizing PRISMA 2020 guidelines, a comprehensive search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted until June 2024. Included studies examined the accuracy, volumetric changes, and mechanical or physical properties of 3D-printed denture bases in various orientations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!