Objective: In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones are more invasive. This study aims to develop and validate an AI-driven radiomics prediction model for such nodules to enhance diagnostic accuracy.

Methods: Data of 2,591 pulmonary nodules from five medical centers (Zhengzhou People's Hospital, etc.) were collected. Applying exclusion criteria, 370 nodules (78 benign, 292 malignant) with 3D CTR ≥ 50% were selected and randomly split 7:3 into training and validation cohorts. Using R programming, Lasso regression with 10-fold cross-validation filtered features, followed by univariate and multivariate logistic regression to construct the model. Its efficacy was evaluated by ROC, DCA curves and calibration plots.

Results: Lasso regression picked 18 non-zero coefficients from 108 features. Three significant factors-patient age, solid component volume and mean CT value-were identified. The logistic regression equation was formulated. In the training set, the ROC AUC was 0.721 (95%CI: 0.642-0.801); in the validation set, AUC was 0.757 (95%CI: 0.632-0.881), showing the model's stability and predictive ability.

Conclusion: The model has moderate accuracy in differentiating benign from malignant 3D CTR ≥ 50% nodules, holding clinical potential. Future efforts could explore more to improve its precision and value.

Clinical Trial Number: Not applicable.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12880-024-01533-9DOI Listing

Publication Analysis

Top Keywords

pulmonary nodules
12
prediction model
8
benign malignant
8
malignant ctr ≥ 50%
8
lasso regression
8
logistic regression
8
nodules
6
development clinical
4
clinical prediction
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!