AI Article Synopsis

Article Abstract

Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil. We conducted a comprehensive plant succession experiment in the greenhouse, utilizing vase soil samples for next-generation sequencing of 16 S rDNA, enzymatic activity assays, and soil chemical properties analysis. Univariate and multivariate analyses were performed to understand better the prokaryotic interactions within soil environments influenced by ADEs and U. brizantha roots, including differential abundance, diversity, and network analyses. Our findings reveal a complementary relationship between U. brizantha and ADEs, each contributing to distinct positive aspects of soil bacterial communities and quality. The combined influence of U. brizantha roots and ADEs exhibited synergies that enhanced prokaryotic diversity and enzyme activity. This balance supported plant growth and increased the general availability of beneficial bacteria in the soil, such as Chujaibacter and Curtobacterium while reducing the presence of potentially pathogenic taxa. This research provided valuable insights into the intricate dynamics of plant-soil feedback, emphasizing the potential for complementary interactions between specific plant species and unique soil environments like ADEs. The findings highlight the potential for pasture ecological rehabilitation and underscore the benefits of integrating plant and soil management strategies to optimize soil characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12866-024-03741-3DOI Listing

Publication Analysis

Top Keywords

soil
11
urochloa brizantha
8
amazonian dark
8
soil environments
8
brizantha roots
8
ades
6
brizantha
5
harnessing synergy
4
synergy urochloa
4
brizantha amazonian
4

Similar Publications

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!