Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications. To reduce production costs, we aimed to develop an alternative method using a prokaryotic expression system. We first optimized the codon usage of the H4 gene for prokaryotic expression and then cloned it into the pET32a vector, incorporating thioredoxin and enterokinase cleavage sites to minimize toxicity in host cells. The resulting plasmid was transformed into E. coli BL21, yielding a fusion protein (TrxA-EK-H4). Correct cleavage of TrxA-EK-H4 required the addition of urea as a denaturant in the dialysis buffer. However, on-column enzymatic cleavage obviated the need for denaturants and yielded higher-purity rH4. The antibacterial activity of rH4 against multidrug-resistant Acinetobacter baumannii was comparable to that of chemically synthesized H4. This study demonstrates a valuable strategy for efficient purification of challenging proteins and has significant implications for future biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12602-025-10456-y | DOI Listing |
JAMA
January 2025
Assistant Secretary for Technology Policy/Office of the National Coordinator for Health IT, Washington, DC.
Importance: Health information technology, such as electronic health records (EHRs), has been widely adopted, yet accessing and exchanging data in the fragmented US health care system remains challenging. To unlock the potential of EHR data to improve patient health, public health, and health care, it is essential to streamline the exchange of health data. As leaders across the US Department of Health and Human Services (DHHS), we describe how DHHS has implemented fundamental building blocks to achieve this vision.
View Article and Find Full Text PDFRheumatol Ther
January 2025
Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Infect Dis Ther
January 2025
ViiV Healthcare, Madrid, Spain.
Introduction: Dolutegravir (DTG) + lamivudine (3TC) demonstrated high rates of virologic suppression (VS) and low rates of virologic failure (VF), discontinuation, and drug resistance in randomized trials. Real-world evidence can support treatment effectiveness, safety, and tolerability in clinical practice and aid in treatment decisions.
Methods: A systematic literature review (SLR) was conducted to identify studies using DTG + 3TC (January 2013-March 2024).
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!