Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells. However, it remains unclear if HIV spVL associated variants are associated with CHD1L gene expression changes. Here we apply a heuristic fine-mapping approach to prioritize combinations of variants that explain the majority of set-point viral load variance and identify variants likely driving the association. We assess the combined impact of these variants on CHD1L regulation using publicly available sequencing studies, and test the relationship between CHD1L expression and set-point viral load using imputed CHD1L expression from monocytes. Taken together, this work characterizes genetically regulated CHD1L expression and further expands our knowledge of CHD1L-mediated HIV restriction in monocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84817-y | DOI Listing |
Sci Rep
January 2025
Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.
Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Dermatology, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China.
To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Colorectal cancer (CRC) is one of the most prevalent and deadly forms of cancer. It is universally treated with a combination of the DNA damaging chemotherapy drugs irinotecan, 5-Fluorouracil (5-FU), and oxaliplatin. is a novel oncogene that plays critical roles in chromatin remodeling and DNA damage repair, as well as the regulation of malignant gene expression.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France.
Poult Sci
November 2024
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. Electronic address:
Spermatogenesis is a crucial indicator of geese reproduction performance and production. The testis is the main organ responsible for sperm production, and the egg-laying cycle in geese is a complex physiological process that demands precise orchestration of hormonal cues and cellular events within the testes, however, the seasonal changes in the transcriptomic and proteomic profiles of goose testicles remain unclear. To explore various aspects of the mechanisms of the seasonal cyclicity of testicles in different goose breeds, in this study, we used an integrative transcriptomic and proteomic approach to screen the key genes and proteins in the testes of 2 goose males, the Hungarian white goose and the Wanxi white goose, at 3 different periods of the laying cycle: beginning of laying cycle (BLC), peak of laying cycle (PLC), and end of laying cycle (ELC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!