The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.8 million tons (Mt) (67%), 12.4 Mt (96%), and 37.2 Mt (93%), respectively, significantly decreasing reliance on import. Moreover, battery recycling coupled with reuse can reduce carbon emissions by up to 6,532-6,864 Mt (36.0-37.9%), depending on four recycling methods employed. However, this reuse strategy delays battery recycling and risks lithium supply shortage, necessitating trade-offs between carbon reduction and material supply. Future technologies, such as lithium-sulfur and all-solid-state batteries, despite their energy efficiency, might exacerbate lithium shortage, underscoring the crucial need for increased lithium supply.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-86250-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!