Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide in all age groups and cause significant disease and economic burden globally. To date, no approved vaccines or antiviral therapies are available to treat or prevent HuNoV illness. Several candidate vaccines are in clinical trials, although potential barriers to successful development must be overcome. Recently, significant advances have been made in understanding HuNoV biology owing to breakthroughs in virus cultivation using human intestinal tissue-derived organoid (or enteroid) cultures, advances in structural biology technology combined with epitope mapping and increased metagenomic sequencing. New and unexpected strain-specific differences in pandemic versus non-pandemic virus structures, replication properties and virus-host interactions, including host factors required for susceptibility to infection and pathogenesis, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41579-024-01144-9DOI Listing

Publication Analysis

Top Keywords

norovirus replication
4
replication host
4
host interactions
4
interactions vaccine
4
vaccine advances
4
advances human
4
human noroviruses
4
noroviruses hunovs
4
hunovs leading
4
leading acute
4

Similar Publications

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide in all age groups and cause significant disease and economic burden globally. To date, no approved vaccines or antiviral therapies are available to treat or prevent HuNoV illness. Several candidate vaccines are in clinical trials, although potential barriers to successful development must be overcome.

View Article and Find Full Text PDF

Unlabelled: Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.

View Article and Find Full Text PDF

H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus.

Open Forum Infect Dis

January 2025

Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.

Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.

View Article and Find Full Text PDF

The use of human intestinal enteroid cell cultures for detection of multiple gastroenteric viruses.

J Virol Methods

December 2024

Office of Applied Microbiology and Technology, Office of Laboratory Operations and Applied Science, Human Foods Program, Food and Drug Administration, Laurel, MD 20708, USA.

Human norovirus (HuNoV) and human astrovirus (HAstV) are viral enteric pathogens and known causative agents of acute gastroenteritis. Identifying the presence of these viruses in environmental samples such as irrigation water, or foods exposed to virus contaminated water (e.g.

View Article and Find Full Text PDF

The Sdp-SH3b2 domain contained in N6.2-derived extracellular vesicles inhibit murine norovirus replication.

Front Immunol

December 2024

Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.

The internalization of N6.2 extracellular vesicles (EVs) by cells results in a significant induction of the 2',5'-oligoadenylate synthetase (OAS) pathway. It also induces expression of and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!