Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Published: January 2025

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.5°C and strain with a gauge factor of 1401.5. The design of the nanocomposites also explores the synergistic effect between the porous graphene and thermoelectric components to greatly enhance the Seebeck coefficient by almost four times (from 9.703 to 37.33 μV/°C). Combined with the stretchability of 45%, the self-powered sensor platform allows for early fire detection in remote settings and accurate and decoupled monitoring of temperature and strain during the wound healing process in situ. The design concepts from this study could also be leveraged to prepare multimodal sensors with decoupled sensing capability for accurate multi-parameter detection towards health monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742402PMC
http://dx.doi.org/10.1038/s41467-024-55790-xDOI Listing

Publication Analysis

Top Keywords

thermoelectric porous
8
porous graphene
8
porous laser-induced
4
laser-induced graphene-based
4
graphene-based strain-temperature
4
strain-temperature decoupling
4
self-powered
4
decoupling self-powered
4
self-powered sensing
4
sensing despite
4

Similar Publications

Computational Model of the Effective Thermal Conductivity of a Bundle of Round Steel Bars.

Materials (Basel)

January 2025

Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.

During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.

View Article and Find Full Text PDF

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

Hierarchical Porous Silicon-Carbon Encapsulated Phase Change Materials for Efficient Photothermoelectric Conversion.

ACS Appl Mater Interfaces

December 2024

Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.

Scale-up applications in solar energy storage of phase change materials (PCMs) are hindered by the limitation of solid-liquid leakage and the lack of light absorption ability. Porous silicon-carbon (PSC) with a high specific surface area was prepared from a phytolith (Phy) silicon-carbon ore by the alkali-melting method, taking advantage of the natural mineral rich in light-trapping carbon structures in Phy. Stearic acid (SA) was impregnated into the PSC to produce integrated photothermal composite phase change materials (SA/PSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!