Gravity has long been purported to serve a unique role in sensorimotor coordination, but the specific mechanisms underlying gravity-based visuomotor realignment remain elusive. In this study, astronauts (9 males, 2 females) performed targeted hand movements with eyes open or closed, both on the ground and in weightlessness. Measurements revealed systematic drift in hand-path orientation seen only when eyes were closed and only in very specific conditions with respect to gravity. In weightlessness, drift in path orientation was observed in two postures (seated, supine) for two different movement axes (longitudinal, sagittal); on Earth, such drift was only observed during longitudinal (horizontal) movements performed in the supine posture. In addition to providing clear evidence that gravitational cues play a fundamental role in sensorimotor coordination, these unique observations lead us to propose an "inverted pendulum" hypothesis to explain the saliency of the gravity vector for eye-hand coordination - and why eye-hand coordination is altered during body tilt or in weightlessness. In an experiment performed with astronauts, we made an unexpected observation that bears upon the fundamental question of gravity's role in aligning visuomotor reference frames. Measurements of targeted motions performed on the ground and in weightlessness revealed systematic drift in path orientation seen only in very specific conditions. These unique observations lead us to propose an "inverted pendulum" hypothesis to explain the saliency of the gravity vector for sensorimotor coordination.

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1384-24.2024DOI Listing

Publication Analysis

Top Keywords

sensorimotor coordination
16
targeted motions
8
role sensorimotor
8
ground weightlessness
8
revealed systematic
8
systematic drift
8
specific conditions
8
drift path
8
path orientation
8
unique observations
8

Similar Publications

Gravity has long been purported to serve a unique role in sensorimotor coordination, but the specific mechanisms underlying gravity-based visuomotor realignment remain elusive. In this study, astronauts (9 males, 2 females) performed targeted hand movements with eyes open or closed, both on the ground and in weightlessness. Measurements revealed systematic drift in hand-path orientation seen only when eyes were closed and only in very specific conditions with respect to gravity.

View Article and Find Full Text PDF

Joint action partners modulate the first step of an action sequence to communicate a distal goal.

Acta Psychol (Amst)

January 2025

Department of Linguistics, Cognitive Science, and Semiotics, Aarhus University, Jens Chr. Skous Vej 2, 1485-638 Aarhus, Denmark; Interacting Minds Centre, Aarhus University, Jens Chr. Skous Vej 2, 1485-638 Aarhus, Denmark. Electronic address:

When two co-actors perform a joint action, they often communicatively modulate their instrumental actions so as to facilitate each other's predictions of their immediate, proximal goals. Here, we ask whether co-actors would also engage in such "sensorimotor communication" for distal goals, specifically those that result from a two-step action sequence. To address this question, we asked pairs of participants to work together to deliver an animated box to one of two delivery locations displayed on a computer screen.

View Article and Find Full Text PDF

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

The parasubthalamic nucleus: A novel eating center in the brain.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China. Electronic address:

Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities.

View Article and Find Full Text PDF

Perceiving inter-leg speed differences while walking on a split-belt treadmill.

Sci Rep

January 2025

Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany.

Walking is one of the most common forms of self-motion in humans. Most humans can walk effortlessly over flat uniform terrain, but also a variety of more challenging surfaces, as they adjust their gait to the demands of the terrain. In this, they rely in part on the perception of their own gait and of when it needs to be adjusted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!