AI Article Synopsis

Article Abstract

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown. G9a (encoded by ) catalyzes H3K9me2 and generally represses gene transcription. In this study, we found that intrathecal administration of UNC0638, a specific G9a inhibitor, or G9a-specific siRNA, substantially reduced complete Freund's adjuvant (CFA)-induced pain hypersensitivity. Remarkably, CFA treatment did not induce persistent pain hypersensitivity in male and female mice with conditional knockout in dorsal root ganglion (DRG) neurons. RNA sequencing and quantitative PCR analyses showed that CFA treatment caused a sustained increase in mRNA levels of and in the DRG. knockout in DRG neurons elevated baseline and mRNA levels but notably reversed CFA-induced increases in their expression. Chromatin immunoprecipitation revealed that CFA treatment reduced G9a and H3K9me2 levels while increasing H3K9ac and H3K4me3-activating histone marks-at and promoters in the DRG. Strikingly, conditional knockout in DRG neurons not only diminished H3K9me2 but also reversed CFA-induced increases in H3K9ac and H3K4me3 at and promoters. Our findings suggest that G9a in primary sensory neurons constitutively represses and transcription under normal conditions but paradoxically enhances their transcription during tissue inflammation. This latter action accounts for inflammation-induced TRPA1 and TRPV1 upregulation in the DRG. Thus, G9a could be targeted for alleviating persistent inflammatory pain. This study demonstrates for the first time that G9a, a histone methyltransferase, in sensory neurons is crucial for the persistent pain development following inflammation. Inhibiting or knockdown of G9a at the spinal cord level reduced inflammation-induced pain hypersensitivity. Remarkably, mice lacking G9a in sensory neurons failed to develop persistent pain hypersensitivity after inflammation. Ablating G9a in sensory neurons increased baseline expression of the TRPA1 and TRPV1 ion channels but reversed their upregulation induced by inflammation. Additionally, G9a deletion blocked the inflammation-driven enrichment of activating histone marks at and promoters. These findings highlight a dual role of G9a in sensory neurons: suppressing and transcription under normal conditions while promoting their transcription during inflammation through bivalent histone modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.1790-24.2024DOI Listing

Publication Analysis

Top Keywords

sensory neurons
28
pain hypersensitivity
16
g9a
12
primary sensory
12
inflammatory pain
12
trpa1 trpv1
12
cfa treatment
12
persistent pain
12
drg neurons
12
g9a sensory
12

Similar Publications

SCN10A gene polymorphism is associated with pain sensitivity and postoperative analgesic effects in patients undergoing gynecological laparoscopy.

Eur J Med Res

January 2025

Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.

Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.

View Article and Find Full Text PDF

Background/ Aims: To analyze the longitudinal change in Bruch's membrane opening minimal rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (pRNFL) thickness using optical coherence tomography (OCT) after implantation of a PRESERFLO® microshunt for surgical glaucoma management in adult glaucoma patients.

Methods: Retrospective data analysis of 59 eyes of 59 participants undergoing implantation of a PRESERFLO microshunt between 2019 and 2022 at a tertiary center for glaucoma management. Surgical management included primary temporary occlusion of the glaucoma shunt to prevent early hypotony.

View Article and Find Full Text PDF

Interoception broadly refers to awareness of one's internal milieu. Although the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferent signalling and corresponding brain circuits that shape perception of the viscera are not entirely clear. Here, we use mice to parse neural circuits subserving interoception of the heart and gut.

View Article and Find Full Text PDF

Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.

View Article and Find Full Text PDF

Neocortical somatostatin neuron diversity in cognition and learning.

Trends Neurosci

January 2025

Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!