AI Article Synopsis

Article Abstract

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs). Notably, the coatings retain 99.0% antimicrobial activity even after eight cycles of use and exhibit highly adhesive and anti-water washing properties, maintaining their efficacy after eight uses and 30 days of water soaking on various substrates. When applied as sustainable food packaging coatings for perishable fruits at room temperature, the ELA coatings significantly extend the shelf life of strawberries and cherry tomatoes, reducing weight loss and maintaining firmness and sweetness. This study demonstrates the potential of ELA NPs as versatile and durable coating materials for mitigating food waste and agricultural economic losses due to microbial pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c12058DOI Listing

Publication Analysis

Top Keywords

ela nps
8
coatings
6
bioinspired assembly
4
assembly natural
4
natural polyphenol-amino
4
polyphenol-amino acid
4
acid surfactants
4
surfactants multifunctional
4
multifunctional durable
4
durable coatings
4

Similar Publications

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

Photoresponsive Nanocarriers Based on Lithium Niobate Nanoparticles for Harmonic Imaging and On-Demand Release of Anticancer Chemotherapeutics.

ACS Nanosci Au

August 2022

Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, Lausanne CH-1015, Switzerland.

Nanoparticle-based drug delivery systems have the potential for increasing the efficiency of chemotherapeutics by enhancing the drug accumulation at specific target sites, thereby reducing adverse side effects and mitigating patient acquired resistance. In particular, photo-responsive nanomaterials have attracted much interest due to their ability to release molecular cargos on demand upon light irradiation. In some settings, they can also provide complementary information by optical imaging on the (sub)cellular scale.

View Article and Find Full Text PDF

The aim of the present work is to evaluate the toxicity of titanium dioxide nanoparticles (TiONPs) according to their doses and particle sizes. The effect of five days oral administration of TiONPs (21 and 80 nm) with different doses (50, 250 and 500 mg/kg body weight) was assessed in mice via measurement of oxidative stress markers; glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nitric oxide (NO), liver function indices; aspartate and alanine aminotransferases (AST and ALT), chromosomal aberrations and liver histopathological pattern. The results revealed drastic alterations in all the measured parameters and showed positive correlation with the gradual dose increment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!