Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts. We fabricate an aligned topological scaffold by combining the E-jet 3D printing and electrospinning to exert synergistic topographical cue for peripheral nerve regeneration. To address the limitation of NGCs with hollow lumens in repairing long-distance nerve defects, we modified the internal microenvironment by filling the lumen with umbilical cord-derived decellularized extracellular matrix (dECM) hydrogels and extracellular vesicles (EVs). This approach led to the development of a functional HE-NGC. Herein, the HE-NGCs provided obvious guidance and proliferation to SCs and PC12 in vitro due to the sustained-release effect of dECM hydrogels and the outstanding proliferation-promoting role of EVs. The HE-NGCs was surgically implanted in vivo to bridge 12-mm gap sciatic nerve defect in rats and it had a satisfactory effect in reestablishment of the sciatic nerve, including the recovery of motor functions and the myelination. Further studies revealed that HE-NGCs might promoted axon growth by activating the PI3K/Akt/mTOR and inhibiting the MAPK signaling pathways. These findings indicate that HE-NGCs effectively promote nerve regeneration, offering a promising strategy for applications in peripheral nerve repair. STATEMENT OF SIGNIFICANCE: This study introduces an approach using an E-jet 3D printing system to fabricate three-dimensional aligned scaffolds with varying gap sizes, optimizing the structure for Schwann cells migration. We present, for the first time, a comprehensive investigation into the effects of EVs derived from umbilical cord mesenchymal stem cells on Schwann cells behavior. By leveraging the natural extracellular matrix (ECM), we significantly enhanced the efficacy and longevity of EVs encapsulated within a dECM hydrogel. Our provided strategy involves utilizing EVs to support nerve cell migration and proliferation along aligned NGCs. As the dECM hydrogel degrades, EVs are gradually released, facilitating the deposition of new ECM and enabling the repair of nerve defects up to 12-mm in length.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2025.01.025 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Curr Cardiol Rep
January 2025
Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.
View Article and Find Full Text PDFCell Biosci
January 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!