Bipolar disorder (BD) is a severe mental illness characterized by recurrent episodes of depression and mania. Lithium is the gold standard pharmacotherapy for BD, but outcomes are variable, and the relevant therapeutic mechanisms underlying successful treatment response remain uncertain. To identify synaptic markers of BD and lithium response, we measured the effects of lithium on induced pluripotent stem cell-derived neurons from BD patients and controls. We determined that baseline expression of synapsin I (SYN1) and PSD-95 is reduced in BD neurons compared to controls. In control neurons, lithium treatment had modest, transient effects increasing SYN1 and PSD-95 expression. In BD neurons, lithium increased SYN1 expression regardless of lithium response history. However, lithium only increased PSD-95 expression selectively in neurons from lithium-responders and not in neurons from lithium non-responders, leading to group differences in the colocalization of SYN1 and PSD-95. In conclusion, this preliminary work indicates synaptic protein markers are associated with BD pathology and correction of post-synaptic protein expression may be an important mechanism underlying lithium response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2025.110313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!