The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key.

Fish Shellfish Immunol

College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.1, 1, 10 μg/L for 30 days. Histomorphological evaluation revealed thrombus formation and vacuolization in the brains of zebrafish exposed to 10 μg/L MC-LR. Additionally, this exposure led to elevated MDA levels and decreased T-SOD, CAT and GSH levels in the brain, indicating oxidative stress. MC-LR exposure also significantly increased TNF-α and IL-1β contents and altered transcriptional levels of genes associated with the NOD/NFκB pathway (nod1, nod2, tak2, ripk2, ikbkb, nfkbiaa and nfkb2), implicating that MC-LR induced neuroinflammation. Concurrently, disruptions in neurotransmitter systems were observed, manifested by reductions in ACH, DA, 5-HT contents, an increase in Glu, and changes in related genes (ache, chran7a, dat, drd2b, 5htt, htr1aa, glsa and grin2aa). Partial least squares path modeling (PLS-PM) analysis showed that the oxidative stress and antioxidant defenses directly affected the cholinergic and glutamatergic systems and inflammatory response, as well as indirectly influenced the dopaminergic system via inflammation. Thus, our results suggest that oxidative stress may be a potential mechanism underlying the neuroinflammation and disruption of neurotransmitter systems induced by MC-LR. Furthermore, BMD modeling indicated that the BMDL values for ACH, T-SOD and MDA were all greater than 1 μg/L, suggesting that long-term exposure to MC-LR concentrations below 1 μg/L pose a relatively low risk of neurotoxicity. The lowest BMDL for MDA also implies that oxidative stress is a primary concern in the brain, making MDA a preferred biomarker for MC-LR exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2025.110126DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
mc-lr
9
mc-lr induced
8
induced neuroinflammation
8
neurotransmitter system
8
zebrafish danio
8
danio rerio
8
mc-lr concentrations
8
concentrations μg/l
8
mc-lr exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!