Ubiquitin-A structural perspective.

Mol Cell

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

Published: January 2025

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2024.12.015DOI Listing

Publication Analysis

Top Keywords

ubiquitin
9
polyubiquitin structures
8
ubiquitin-a structural
4
structural perspective
4
perspective modification
4
modification proteins
4
proteins biomolecules
4
biomolecules small
4
small protein
4
protein ubiquitin
4

Similar Publications

Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.

View Article and Find Full Text PDF

The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood.

View Article and Find Full Text PDF

Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation.

Biomed Pharmacother

January 2025

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic. Electronic address:

Intracellular protein aggregation causes proteotoxic stress, underlying highly debilitating neurodegenerative disorders in parallel with decreased proteasome activity. Nevertheless, under such stress conditions, the expression of proteasome subunits is upregulated by Nuclear Factor Erythroid 2-related factor 1 (NRF1), a transcription factor that is encoded by NFE2L1. Activating the NRF1 pathway could accordingly delay the onset of neurodegenerative and other disorders with impaired cell proteostasis.

View Article and Find Full Text PDF

Background: Regeneration plays a key role in energy recycling and homeostasis maintenance. Planarians, as ideal model animals for studying regeneration, stem cell proliferation, and apoptosis, have the strong regenerative abilities. Considerable evidence suggests that ubiquitin plays an important role in maintaining homeostasis and regulating regeneration, but the function of Ubiquitin specific proteases 7 (Usp7) on regeneration in planarians remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!