Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing.

Mol Cell

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain. Electronic address:

Published: January 2025

RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution. Here, we review recent efforts pioneering the use of DRS to better understand the epitranscriptomic landscape. We highlight how DRS can be applied to investigate different RNA biotypes, emphasizing the use of specialized library preparation protocols and downstream bioinformatic workflows to detect both natural and synthetic RNA modifications. Finally, we provide a perspective on the future role of DRS in epitranscriptomic research, highlighting remaining challenges and emerging opportunities from improved sequencing yields and accuracy enabled by the latest DRS chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2024.12.014DOI Listing

Publication Analysis

Top Keywords

rna biotypes
12
epitranscriptomic landscape
8
rna
8
rna nanopore
8
nanopore sequencing
8
rna modifications
8
diverse rna
8
drs
5
charting epitranscriptomic
4
landscape rna
4

Similar Publications

Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing.

Mol Cell

January 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain. Electronic address:

RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution.

View Article and Find Full Text PDF

Objective: To discover microRNA (miRNA)-RNA transcript interactions dysregulated in brains from persons with HIV-associated neurocognitive disorder (HAND), we investigated RNA expression using machine learning tools.

Design: Brain-derived host RNA transcript and miRNA expression was examined from persons with or without HAND using bioinformatics platforms.

Methods: By combining next generation sequencing, droplet digital (dd)PCR quantitation of HIV-1 genomes, with bioinformatics and statistical tools, we investigated differential RNA expression in frontal cortex from persons without HIV (HIV[-]), with HIV without brain disease (HIV[+]), with HIV-associated neurocognitive disorder (HAND), or HAND with encephalitis (HIVE).

View Article and Find Full Text PDF

Brown planthoppers (BPHs, Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which exhibit significant virulence against the rice variety YHY15 that harbors the resistance gene . The various response mechanisms of BPH populations to resistant rice varieties are critical yet underexplored.

View Article and Find Full Text PDF

, an obligate endosymbiont of most aphid species, can influence aphids' host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of remains unclear. To address this issue, six biotypes were tested in this study.

View Article and Find Full Text PDF

Identification of NECTIN1 as a novel restriction factor for flavivirus infection.

mBio

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Article Synopsis
  • NECTIN1 is a cell adhesion molecule known mainly for its interaction with herpesviruses, but this study reveals its new role as a barrier against flavivirus infections, specifically BVDV.
  • The researchers found that reducing NECTIN1 levels increased BVDV infections and identified NECTIN1's IgV domain as crucial for its inhibiting function, affecting how BVDV attaches to cells.
  • The study also showed NECTIN1’s broader antiviral activity against several other viruses, highlighting its potential significance as a restriction factor in controlling flavivirus infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!