Metabolism-driven chromatin dynamics: Molecular principles and technological advances.

Mol Cell

Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Published: January 2025

Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources. We discuss recent advances in our understanding of the mechanisms by which metabolic enzyme activities shape the chromatin structure and modifications, how specificity may emerge from their seemingly broad effects, and technologies that facilitate the study of epigenome-metabolome interplay. The recognition that metabolites are immanent components of the chromatin regulatory network has significant implications for the evolution, function, and therapeutic targeting of the epigenome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2024.12.012DOI Listing

Publication Analysis

Top Keywords

metabolism-driven chromatin
4
chromatin dynamics
4
dynamics molecular
4
molecular principles
4
principles technological
4
technological advances
4
advances cells
4
cells integrate
4
integrate metabolic
4
metabolic core
4

Similar Publications

Metabolism-driven chromatin dynamics: Molecular principles and technological advances.

Mol Cell

January 2025

Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources.

View Article and Find Full Text PDF

Emerging trends in genomic and epigenomic regulation of plant specialised metabolism.

Phytochemistry

November 2022

La Trobe Institute for Agriculture and Food, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia. Electronic address:

Regulation of specialised metabolism genes is multilayered and complex, influenced by an array of genomic, epigenetic and epigenomic mechanisms. Here, we review the most recent knowledge in this field, drawing from discoveries in several plant species. Our aim is to improve understanding of how plant genome structure and function influence specialised metabolism.

View Article and Find Full Text PDF

The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells.

Stem Cell Rev Rep

June 2022

Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.

Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Metabolically controlled histone H4K5 acylation/acetylation ratio drives BRD4 genomic distribution.

Cell Rep

July 2021

CNRS UMR 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, 38706 La Tronche, France; Pôle Franco-Chinois de Recherche en Sciences du Vivant et Génomique, 200025 Shanghai, China. Electronic address:

In addition to acetylation, histones are modified by a series of competing longer-chain acylations. Most of these acylation marks are enriched and co-exist with acetylation on active gene regulatory elements. Their seemingly redundant functions hinder our understanding of histone acylations' specific roles.

View Article and Find Full Text PDF

To better understand the molecular basis of resistance to azacitidine (AZA) therapy in myelodysplastic syndromes (MDS) and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), we performed RNA sequencing on pre-treatment CD34 hematopoietic stem/progenitor cells (HSPCs) isolated from 25 MDS/AML-MRC patients of the discovery cohort (10 AZA responders (RD), six stable disease, nine progressive disease (PD) during AZA therapy) and from eight controls. Eleven MDS/AML-MRC samples were also available for analysis of selected metabolites, along with 17 additional samples from an independent validation cohort. Except for two patients, the others did not carry isocitrate dehydrogenase (IDH)1/2 mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!