The plastic revolution's contribution to global pollution gives rise to microplastics (MPs), bearing a toll on the marine environment. Knowledge of mangrove exposure to MPs causing adverse effects has yet to be elucidated. Hence, the physiological responses of R. mucronata propagules exposed to ubiquitous High-Density Polyethylene Microplastics (HDPE-MPs) were investigated. The set-up consists of a control (0 mg/L) and an environmentally relevant treatment group (32.65 mg/L), acclimatized and exposed for three months. Scanning Electron Microscopy (SEM) shows agglomeration of HDPE-MPs on root surfaces and translocation to the shoot system of smaller MPs (< 50 μm). Attenuated Total Reflectance Fourier Transform-Infrared Spectroscopy (ATR FT-IR) confirmed uptake in the roots. Root length, count, plant height, foliar area, and oxidative stress biomarkers (carbonyl protein and total chlorophyll) all show significant differences (p < 0.05). Indeed, plastic pollution has detrimental effects on mangroves that may consequently affect mangrove forest diversity and productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2025.117569DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
propagules exposed
8
high-density polyethylene
8
polyethylene microplastics
8
uptake growth
4
growth oxidative
4
stress responses
4
responses rhizophora
4
rhizophora mucronata
4
mucronata poir
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!