Although significant progress has been made in the effective measurement of Zn(II), Аlizarin red S (ARS) was immobilized on polyethylene polyamine-modified polyacrylonitrile (PPF-1) via a new matrix. This approach allows the detection of low levels of Zn(II) ions in various water samples via preconcentrated atomic absorption spectrometry. The use of PPF-1 in a polymer matrix for zinc preconcentration presents several advantages over traditional sorbtion-spectroscopic methods, including reduced cost, high zinc recovery, increased sensitivity, and selectivity. The maximum sensitivity of Zn(II) determination using selectively immobilized ARS was 522 nm. The optimal pH for Zn(II) detection at ambient temperature was found to be 5.0. The adsorption rate was approximately, with a linear detection range of 6.5-40 mg × L and a detection limit of 0.6 mg × L The immobilized ARS polymer matrix demonstrated selective Zn(II) determination even in the presence of solutions of Na, K, Ca, Mg, Ba, SO, CO, HCO and Cl. The Zn(II) concentrations in various water samples were measured with high precision, revealing an adsorption efficiency of 98-99 % when the ARS/PPF-1 matrix was used. This method was developed for the determination of Zn(II) ions in technogenic, waste, and industrial fluids via sorption spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2025.127526DOI Listing

Publication Analysis

Top Keywords

znii ions
8
water samples
8
polymer matrix
8
znii determination
8
immobilized ars
8
znii
7
determination
4
determination zinc
4
zinc complexation
4
immobilized
4

Similar Publications

Although significant progress has been made in the effective measurement of Zn(II), Аlizarin red S (ARS) was immobilized on polyethylene polyamine-modified polyacrylonitrile (PPF-1) via a new matrix. This approach allows the detection of low levels of Zn(II) ions in various water samples via preconcentrated atomic absorption spectrometry. The use of PPF-1 in a polymer matrix for zinc preconcentration presents several advantages over traditional sorbtion-spectroscopic methods, including reduced cost, high zinc recovery, increased sensitivity, and selectivity.

View Article and Find Full Text PDF

Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions.

J Hazard Mater

January 2025

State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.

View Article and Find Full Text PDF

Biarsenical-based fluorescent labeling of metallothioneins as a method for ultrasensitive quantification of poly-Cys targets.

Anal Chim Acta

February 2025

Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland. Electronic address:

Background: Mammalian metallothioneins (MTs) play a crucial role in maintaining Zn(II) and Cu(I) homeostasis, as well as regulating the cellular redox potential. They are involved in cancer resistance to cisplatin-related drugs and the sequestration of toxic metal ions. To investigate their participation in specific physiological and pathological processes, it is imperative to develop an analytical method for measuring changes in protein concentration both in vitro and in vivo.

View Article and Find Full Text PDF

Tuning Bro̷nsted Acidity by up to 12 p Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States.

Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites ( = H, Zn, Co, Co) affect the p of benzoic acid guests bound in discrete porphyrin nanoprisms () in CDCN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H transfer processes that are needed to support important electrochemical reactions (e.

View Article and Find Full Text PDF

Effective glycemic control is paramount for optimal wound healing in diabetic patients. Traditional antibacterial and anti-inflammatory treatments, while important, often fall short in addressing the hyperglycemic conditions of diabetic wounds. Therefore, the development of novel therapeutic strategies for accelerating diabetic wound healing has garnered escalating attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!