In order to make the transition from a linear to a circular economy, unprecedented measures are required from all social actors. Communication plays a fundamental role in this transition. The use of social marketing as an alternative to traditional communication models can promote the paradigm shift in order to increase communicative effectiveness. Understanding the perception of circular economy drivers is crucial for communication efforts aimed at persuading citizens to change their habits. To this end, this study analyzes drivers' perceptions of communication processes aimed at environmental awareness and sensitization. Using grounded theory, a qualitative methodology, 44 interviews were conducted with four groups that are considered promoters of the circular economy: Public administration and private enterprises representatives, university professors and scientific personnel. The actors' discourse was analyzed and the results show how they perceive their involvement in the transition process, the level of public awareness and the awareness-raising measures. The conclusion is: a) communication plays a fundamental role in fostering cooperation between all actors involved in the transition to a circular economy; b) communication strategies targeting society should be segmented by population groups, taking into account aspects such as area, age and level of awareness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.124112 | DOI Listing |
ACS Sustain Chem Eng
January 2025
Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.
Although membrane technology is widely used in different gas separation applications, membrane manufacturers need to reduce the environmental impact during the membrane fabrication process within the framework of the circular economy by replacing toxic solvents, oil-based polymers, and such by more sustainable alternatives. These include environmentally friendly materials, such as biopolymers, green solvents, and surfactant free porous fillers. This work promotes the use of environmentally sustainable and low toxic alternatives, introducing the novel application of cellulose acetate (CA) as a biopolymer in combination with dimethyl carbonate (DMC) as a greener solvent and different inorganic fillers (Zeolite-A, ETS-10, AM-4 and ZIF-8) prepared without the use of toxic solvents or reactants.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan.
The ubiquitous presence of plastic waste presents a significant environmental challenge, characterized by its persistence and detrimental impacts on ecosystems. The valorization of plastic waste through conversion into high-value carbon materials offers a promising circular economy approach. This review critically examines the potential of plastic waste-derived activated carbon (PAC) as a sustainable and effective adsorbent for water remediation.
View Article and Find Full Text PDFWaste Manag
January 2025
Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China.
As a promising alternative to traditional plastics, the widespread application of biodegradable plastic (BP) will help solve worsening environmental problems. Enzymes such as cutinase, lipase, protease and esterase produced by bacteria and fungi in the environment play a crucial role in the degradation, recycling and valorization of BP by degrading them into low-molecular-weight oligomers or small monomers. These enzymes offering advantages such as high efficiency, cleanliness, safety and environmental friendliness, making them more competitive in environmental restoration and circular economy.
View Article and Find Full Text PDFSci Total Environ
January 2025
Material Flow Management and Resource Economy, Institute IWAR, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany.
Nutrient circularity, an exemplification of circular economy (CE), is situated in the waste/wastewater-agriculture nexus. Recycling nutrient elements from waste streams to fertilizer products amplify the sustainable management of resources and intersect technical and biological loops, a concept developed for CE. Such a complex system needs to be directed by robust assessment methods such as life cycle assessment (LCA) to identify trade-offs and potentials.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea. Electronic address:
This study investigates zone melting (ZM) as an innovative method for recycling 7000 series aluminum alloy scraps, a byproduct of computer numerical control (CNC) machining in smartphone production. Traditional fluxing methods are ineffective at removing Zn, a key alloying element. Vacuum atmospheric ZM utilizes the evaporation of Zn and Mg impurities and solidification segregation to concentrate elemental impurities within the melt, facilitating their efficient removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!