The cyclic triangular complex - silver (I) 4-nitro-3,5-bis(trifluoromethyl)pyrazolate (Agpz) with super π-acidity shows great potential in adsorptive desulfurization (ADS) as a novel adsorbent, however, it fails to work well in the continue flow adsorption study. In order to improve its dynamic adsorption performance, a composite has been prepared by mixing Agpz and multilayer graphene (MG) in methanol. Based on the results of characterization by FT-IR, XPS, SEM, and so on, the optimal mass ratio of Agpz:MG in the synthesis is 0.14, so composite obtained under this condition is labeled as Agpz/MG-0.14, in which the molecules of Agpz are uniformly distributed on the surface of MG via Ag∙∙∙C interactions and π-π stacking. The composite exhibits higher specific surface area than that of Agpz. Importantly, the column test proves the practicality of the composite - Agpz/MG-0.14 in continuous flow desulfurization with the enhanced dynamic capacity (4.0 mg S/g), in comparison with 1.9 mg S/g for graphene (C = 200 mg S/L for dibenzothiophene in iso-octane, m = 0.5 g, T = 298 K, v = 0.1 mL∙min). This work confirms the importance and advantage of the integration of functional coordination compound and suitable supporting materials for designing new type of high-performance ADS adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137220DOI Listing

Publication Analysis

Top Keywords

dynamic adsorption
8
composite
5
facile manufacture
4
manufacture silveri
4
silveri complex/multilayer
4
complex/multilayer graphene
4
graphene composite
4
composite dynamic
4
adsorption desulfurization
4
desulfurization cyclic
4

Similar Publications

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Yttrium-doped NiMo-MoO heterostructure electrocatalysts for hydrogen production from alkaline seawater.

Nat Commun

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China.

Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (HO*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes.

View Article and Find Full Text PDF

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.

View Article and Find Full Text PDF

Molecular foundations for shear-induced dynamics of natural organic matter.

Sci Total Environ

January 2025

Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:

The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!