An enzyme-activated loop primer probe LAMP method based on a new SNP site in the group_17537 gene for rapid on-site detection of Salmonella Pullorum.

Poult Sci

National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: January 2025

Pullorum disease (PD) is a widespread disease that causes significant economic losses within the poultry industry of developing countries. An effective strategy for its prevention and control involves the implementation of decontamination procedures utilizing highly specific on-site detection techniques. In this study, a single-nucleotide polymorphism (SNP) site within the group_17537 gene of Salmonella enterica serovar Gallinarum biovars Pullorum (S. Pullorum) was found by using bioinformatics tools. The prevalence of this SNP among 165 strains of S. Pullorum was determined to exceed 96.3 %. The SNP exhibited a specificity rate greater than 99.9 %, with only 0.08 % detected among 2490 non-target Salmonella strains. It can be concluded that this SNP can be employed to distinguish S. Pullorum from other serotypes of Salmonella, specifically Salmonella enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica serovar Gallinarum biovars Gallinarum (S. Gallinarum). Additionally, an enzyme-activated loop primer probe LAMP (EALP-LAMP) was developed based on this SNP site for the detection of S. Pullorum. This method exhibited excellent specificity and reproducibility, achieving limit of detection of 53.5 copies/µL with plasmid DNA and 0.2 pg/µL with genomic DNA. Moreover, in clinical applications involving 190 chick embryo samples from poultry farms, 24 samples identified as S. Pullorum positive, aligning with results obtained through traditional isolation and quantitative real-time PCR (qPCR) methods. These fingdings highlight the significant potential of this method, which offers accurate, rapid, on-site and visual detection of S. Pullorum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psj.2025.104779DOI Listing

Publication Analysis

Top Keywords

snp site
12
salmonella enterica
12
enterica serovar
12
pullorum
9
enzyme-activated loop
8
loop primer
8
primer probe
8
probe lamp
8
based snp
8
site group_17537
8

Similar Publications

An enzyme-activated loop primer probe LAMP method based on a new SNP site in the group_17537 gene for rapid on-site detection of Salmonella Pullorum.

Poult Sci

January 2025

National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Pullorum disease (PD) is a widespread disease that causes significant economic losses within the poultry industry of developing countries. An effective strategy for its prevention and control involves the implementation of decontamination procedures utilizing highly specific on-site detection techniques. In this study, a single-nucleotide polymorphism (SNP) site within the group_17537 gene of Salmonella enterica serovar Gallinarum biovars Pullorum (S.

View Article and Find Full Text PDF

Molecular regulation and domestication of parthenocarpy in cucumber.

Nat Plants

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.

Parthenocarpy is a pivotal trait that enhances the yield and quality of fruit crops by enabling the development of seedless fruits. Here we unveil a molecular framework for the regulation and domestication of parthenocarpy in cucumber (Cucumis sativus L.).

View Article and Find Full Text PDF

Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae).

Sci Rep

January 2025

Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.

The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.

View Article and Find Full Text PDF

[Molecular authentication of calcined oyster (Ostrea gigas) and its processed products].

Zhongguo Zhong Yao Za Zhi

December 2024

Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.

Calcined oyster is a commonly used shellfish traditional Chinese medicine in clinical practice in China. During the processing of oysters, their microscopic characteristics are destroyed, and open-fire calcination can damage the DNA of oysters, making it difficult to identify the primary source. The establishment of a specific polymerase chain reaction(PCR) method for the identification of calcined oysters can provide a guarantee for the safety and clinical efficacy of the medicine and its processed products.

View Article and Find Full Text PDF

Polymorphic short insertions and deletions (INDELs ≤ 50 bp) are abundant, although less common than single nucleotide polymorphisms (SNPs). Evidence from model organisms shows INDELs to be more strongly influenced by purifying selection than SNPs. Partly for this reason, INDELs are rarely used as markers for demographic processes or to detect divergent selection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!