Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches.

Phytomedicine

College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:

Published: January 2025

Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.

Objective: The aim of current study aims is to reconnoiter G. uralensis pharmacological basis and primary molecular mode of action in treating CRC.

Methods: For examining the G. uralensis active ingredients and underlying mechanism investigation against CRC including, potential anti-CRC phytochemicals, targets, and related signaling pathways, HPLC and Network-pharmacology analysis techniques was employed, respectively. Whereas, for binding capabilities of active components to their targets, molecular-docking, molecular dynamic simulation technique employed and cell proliferation assays screened the best anti-CRC components, followed by biological function experiments on SW480 cells for verification. Finally, the SW480-xenograft model and subsequent related experiments further confirmed the effect of Liquiritin on CRC.

Results: Seven compounds were identified from G. uralensis through HPLC. Network pharmacology and molecular docking results indicated that G. uralensis components exhibited significant anti-cancer effects. These effects were mediated through cancer and MAPK-related signaling pathways, targeting TP53, SRC, STAT3, and PIK3CA proteins. In-vitro experiments showed that liquiritin had better anti-CRC effects compared to other components as it significantly repressed the SW480 propagation, development of colony, relocation, and invasion. Additionally, liquiritin has been shown to significantly reduce tumor size in tumor-bearing mice by targeting p53 and inhibiting the p38 MAPK pathway.

Conclusion: In G. uralensis, main API is liquiritin that target CRC tumorigeneses via inhibition of p53 and p38 MAPK, thus can be used for CRC therapy. The findings provide a solid pharmacological basis and potential therapeutic targets for G. uralensis in the treatment of CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2025.156370DOI Listing

Publication Analysis

Top Keywords

uralensis
8
glycyrrhiza uralensis
8
uralensis fisch
8
underlying mechanism
8
active ingredients
8
pharmacological basis
8
signaling pathways
8
p38 mapk
8
crc
6
anti-colorectal cancer
4

Similar Publications

Bacillus pumilus G5 combined with silicon enhanced flavonoid biosynthesis in drought-stressed Glycyrrhiza uralensis Fisch. by regulating jasmonate, gibberellin and ethylene crosstalk.

Plant Physiol Biochem

January 2025

College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan, Yinchuan, 750004, China. Electronic address:

Drought stress poses a significant threat to global agricultural production, including the cultivation of medicinal plants. Plant growth-promoting bacteria (PGPB) and the eco-friendly element silicon (Si) are known to alleviate the adverse effects of drought stress. This study examines how inoculation with Bacillus pumilus G5 or/and Si influences plant hormone signaling and flavonoid biosynthesis pathways in drought-stressed Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice.

Nutrients

January 2025

State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.

Objectives: Polysaccharides from are known to have several bioactive effects. Previous studies have found that low-molecular-weight polysaccharide (GP1) is degraded by and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied.

View Article and Find Full Text PDF

Effect of microbial fertilizers on soil microbial community structure in rotating and continuous cropping .

Front Plant Sci

January 2025

Science and Technology R&D Department, China Chinese Medicine Co., LTD, Beijing, China.

Introduction: is a perennial medicinal plant. It's generally cultivated for three years, and should avoid long-term continuous cultivation. However, unreasonable crop rotation and extensive fertilization are common in cultivation, which leads to the imbalance of soil microflora structure, and the obstacle of continuous cropping are becoming increasingly serious.

View Article and Find Full Text PDF

Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches.

Phytomedicine

January 2025

College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:

Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.

View Article and Find Full Text PDF

Study on the Chemical Composition and Multidrug Resistance Reversal Activity of (Euphorbiaceae).

Int J Mol Sci

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Uilization, Ministry of Education, Shihezi 832002, China.

belongs to the family Euphorbiaceae and is widely distributed in northern Xinjiang, making it a characteristic plant of the region in Xinjiang, China. The chemical composition and biological activity of have not yet been reported, although certain compounds isolated from plants in Xinjiang, China, have demonstrated exceptional multidrug resistance (MDR) reversal. This study aims to investigate the chemical components present in with the potential to reverse MDR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!