Oleandrin inhibits osteoclast differentiation by targeting the LRP4/MAPK/NF-κB signalling pathway to treat osteoporosis.

Int Immunopharmacol

Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, China. Electronic address:

Published: January 2025

Osteoporosis is a common inflammation-related disease in which the release of proinflammatory cytokines promotes bone loss. Oleandrin is a monomer compound extracted from the leaves of the Nerium oleander plant, has been shown to exert an anti-inflammatory effect on a variety of inflammation-related diseases. However, its role in osteoporosis and the underlying mechanisms remain unclear. In this study, Oleandrin was shown to reduce bone loss in ovariectomy-induced osteoporotic mice in vivo. Additionally, Oleandrin inhibited RANKL-induced osteoclast differentiation in a concentration-dependent manner in vitro. Signalling pathway studies showed that Oleandrin could inhibit osteoclast differentiation by targeting MAPK and NF-κB signalling pathways. Further mechanistic studies showed that Oleandrin binds to low-density lipoprotein receptor-related protein 4 in osteoclast, thereby exerting inhibitory effects on osteoclast differentiation. In conclusion, this study lays the foundation for further research on the anti-inflammatory and anti-osteoporotic effects of Oleandrin on osteoporosis and its underlying mechanism and provides new possibilities for the treatment of osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2025.114073DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
16
differentiation targeting
8
signalling pathway
8
bone loss
8
osteoporosis underlying
8
studies oleandrin
8
oleandrin
7
osteoclast
5
osteoporosis
5
oleandrin inhibits
4

Similar Publications

Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling.

View Article and Find Full Text PDF

Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.

View Article and Find Full Text PDF

The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood.

View Article and Find Full Text PDF

Screening and Preparation of Nanobodies for SIGLEC-15 Detection.

Protein Expr Purif

January 2025

Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, 065001, China. Electronic address:

As an important member of the Siglec family, SIGLEC-15 plays an important role in osteoclast differentiation, bone remodeling, and tumor immune evasion. In the tumor microenvironment, SIGLEC-15 functions independently of the B7-H1/PD-1 pathway. In this study, the SIGLEC-15 fusion protein (SIGLEC-15-Fc) was successfully expressed and purified using a eukaryotic expression system.

View Article and Find Full Text PDF

Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!