Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.thromres.2025.109255 | DOI Listing |
Thromb Res
January 2025
Institute for Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.
Stroke
January 2025
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom. (Z.S., E.L.H., H.S.M.).
Background: Endothelial dysfunction and inflammation have been implicated in the pathophysiology of cerebral small vessel disease (SVD). However, whether they are causal, and if so which components of the pathways represent potential treatment targets, remains uncertain.
Methods: Two-sample Mendelian randomization (MR) was used to test the association between the circulating abundance of 996 proteins involved in endothelial dysfunction and inflammation and SVD.
ACS Nano
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.
View Article and Find Full Text PDFBlood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
Platelet-derived extracellular vesicles (PEVs) are rich in growth factors and have significant potential for facilitating tissue repair and regeneration. Therefore, we conducted this meta-analysis to assess the efficacy of PEVs in treating diabetic wounds. To assess the efficacy and safety of PEVs in treating diabetic wounds, we conducted a systematic review of several databases and performed a meta-analysis using a random effects model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!