GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Published: January 2025

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons. MGE cell transplantation restores Ras-PKB signaling in pyramidal neurons, enhances AMPA receptor trafficking, rescues synaptic plasticity, and corrects abnormal hippocampal neural oscillations. These findings highlight the potential of GABAergic precursor cell transplantation as a promising therapeutic strategy for FXS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202411972DOI Listing

Publication Analysis

Top Keywords

fragile syndrome
8
gabaergic precursor
8
pyramidal neurons
8
cell transplantation
8
gabaergic progenitor
4
progenitor cell
4
cell graft
4
graft rescues
4
rescues cognitive
4
cognitive deficits
4

Similar Publications

Introduction: Musculocontractural Ehlers-Danlos syndrome (mcEDS) is a rare autosomal recessive connective tissue disorder caused by systemic depletion of dermatan sulfate. Symptoms characteristic of mcEDS include multiple contractures, fragile skin with subcutaneous bleeding, and hypermobile joints, which suggest difficulty in perioperative management. However, safe surgical techniques and perioperative management of this disorder remain unknown because of its rarity.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder oftentimes associated with abnormal social behaviors and altered sensory responsiveness. It is hypothesized that the inappropriate filtering of sensory stimuli, including olfaction, can lead to aberrant social behavior in FXS. However, previous studies investigating olfaction in animal models of FXS have shown inconsistent results.

View Article and Find Full Text PDF

Mutations in the collagen-modifying enzyme lysyl hydroxylase 1 (LH1) cause Warmblood Fragile Foal Syndrome (WFFS) in horses. We investigated the impact of this mutation on collagen structure and function. Our results show that LH1 deficiency leads to reduced lysine hydroxylation, altered collagen fibril organization, and tissue abnormalities resembling human Ehlers-Danlos syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!