Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery. Employing the U-Net architecture with a ResNet-101 backbone, we explore three band combinations-multispectral, multispectral+NDVI, and multispectral+NDRE-to achieve superior segmentation accuracy. Due to the lack of suitable UAV-based datasets for rice disease, we generate our own dataset through disease inoculation techniques in experimental paddy fields. The dataset is increased using data augmentation and patch extraction methods to improve training robustness. Our findings demonstrate that the U-Net model incorporating ResNet-101 backbone trained with multispectral+NDVI data significantly outperforms other band combinations, achieving high accuracy metrics, including mean Intersection over Union (mIoU) of up to 97.20%, mean accuracy of up to 99.42%, mean F1-score of up to 98.56%, mean Precision of 97.97%, and mean Recall of 99.16%. Additionally, this approach efficiently segments healthy rice from other classes, minimizing misclassification and improving disease severity assessment. Therefore, the experiment concludes that the accurate mapping of the disease extent and severity level in the field is reliable to accurately allocating the compensation. The developed methodology has the potential for broader application in diagnosing other rice diseases, such as Blast, Bacterial Panicle Blight, and Sheath Blight, and could significantly enhance agricultural management through accurate damage mapping and yield loss estimation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741598 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314535 | PLOS |
Braz J Microbiol
January 2025
Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.
Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.
View Article and Find Full Text PDF<b>Background and Objective:</b> <i>Oroxylum indicum</i>, a plant commonly used in traditional medicine to address various human ailments, has recently gained attention as a promising candidate in this regard due to its rich phytochemical composition and potential antibacterial properties. This study was undertaken to evaluate the antibacterial efficacy of <i>O. indicum</i> extracts, specifically from its leaves and stems, against antibiotic-resistant bacteria.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
School of Natural Sciences, Bangor University, Bangor, UK.
Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina.
This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo.
View Article and Find Full Text PDFPlant Dis
January 2025
LSU AgCenter, Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, United States.
In July 2023, panicle and leaf blight-like symptoms were observed from the rice () variety, PVL03, in research field plots in Louisiana (Rayne, LA 70578, USA; 30.21330⁰ N, 92.37309⁰ W).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!