Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains. We hypothesized that the transcriptome signature in response to a 3 h TG treatment (50 mg/kg) provides a comprehensive view of the effect of OGA inhibition. We then performed mRNA sequencing of the brain using NovaSeq PE 150 (n = 5 each group). We identified 1234 significant differentially expressed genes with TG versus saline treatment. Functional enrichment analysis of the upregulated genes identified several upregulated pathways, including genes normally down in AD. Among the downregulated pathways were the cell adhesion pathway as well as genes normally up in AD and aging. When comparing acute to chronic TG treatment, protein autophosphorylation and kinase activity pathways were upregulated, whereas cell adhesion and astrocyte markers were downregulated in both datasets. AMPK subunit Prkab2 was one gene in the kinase activity pathway, and the increase after acute and chronic treatment was confirmed using qPCR. Interestingly, mitochondrial genes and genes normally down in AD were up in acute treatment and down in chronic treatment. Data from this analysis will enable the evaluation of the mechanisms underlying the impact of OGA inhibition in the treatment of AD. In particular, OGA inhibitors appear to have downstream effects related to bioenergetics which may limit their therapeutic benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741514PMC
http://dx.doi.org/10.1111/jnc.16302DOI Listing

Publication Analysis

Top Keywords

protein o-glcnacylation
12
oga inhibition
12
chronic treatment
12
cell adhesion
8
acute chronic
8
kinase activity
8
treatment
7
oga
6
genes
6
acute
5

Similar Publications

Motivation: The accurate prediction of O-GlcNAcylation sites is crucial for understanding disease mechanisms and developing effective treatments. Previous machine learning models primarily relied on primary or secondary protein structural and related properties, which have limitations in capturing the spatial interactions of neighboring amino acids. This study introduces local environmental features as a novel approach that incorporates three-dimensional spatial information, significantly improving model performance by considering the spatial context around the target site.

View Article and Find Full Text PDF

O-GlcNAcylation is an important biological process in regulating the function of many nucleocytoplasmic proteins in cells.  Enhancement of O-GlcNAcylation was associated with cancer development and progression.  Here, we demonstrated the involvement of O-GlcNAcylation in melanoma metastasis.

View Article and Find Full Text PDF

Tau is a microtubule (MT)-associated protein that binds to and stabilizes the MTs of neurons. Due to its intrinsically disordered nature, it undergoes several post-translational modifications (PTMs) that are intricately linked to both the physiological and pathophysiological roles of Tau. Prior research has shown phosphorylation and O-GlcNAcylation to have contrasting effects on Tau aggregation; however, the precise molecular mechanisms and potential synergistic effects of these modifications remain elusive.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!