Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions. In the first case, OEFs predictably accelerate and decelerate the rate of molecular oxygen addition to substituted phenyl, adamantyl, and cubyl radicals, depending on the polarity of the charged functional group and dipole orientation. In the second case, OEFs modulate competition between chlorine and hydrogen atom abstraction from chloroform based on interactions between charge polarity, dipole orientation, and radical polarizability. Importantly, this means the same charge polarity can induce different changes to reaction selectivity. Quantum chemical calculations of these reactions with DSD-PBEP86-D3(BJ)/aug-cc-pVTZ show correlations between the barrier heights and the experimentally determined reaction kinetics. Field effects are consistent between phenyl and cubyl scaffolds, pointing to through-space rather than through-bond field effects, congruent with computations showing that the same effects can be mimicked by point charges. These results experimentally demonstrate how internal OEFs generated by carefully placed charged functional groups can systematically control radical reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733627 | PMC |
http://dx.doi.org/10.1039/d4sc06333c | DOI Listing |
Chem Sci
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong Wollongong New South Wales 2522 Australia
Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Calgary, 2500 University Dr. NW, T2N 1N4 Calgary, AB Canada.
The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (BPzPy)Mo(III)-NTf, , with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol), such that these compounds could be used to form the diamagnetic, neutral terminal molybdenum oxo complex (BPzPy)Mo(IV)O, , by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri--butylphenyl).
View Article and Find Full Text PDFChemistry
January 2025
The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The natural product synthesis of brevione J undergoes a cascade of reactions including an oxidative desaturation and a ring-expansion. The C1-C2 desaturation of brevione B is catalyzed by the nonheme iron dioxygenase BrvJ using one molecule of O2 and a-ketoglutarate (aKG). However, whether the subsequent oxidative ring expansion reaction is also catalyzed by the same enzyme is unknown and remains controversial.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding 071002, China. Electronic address:
Imidacloprid (IMI), as an emerging pollutant, is frequently detected in pesticide wastewater. Cobalt-based single-atom catalysts (Co-SACs) doped with sulfur atoms can serve as an efficient strategy to activate peroxymonosulfate (PMS) and degrade organic pollutants. The paper employed density functional theory and computational toxicology to deeply explore the mechanism and ecotoxicity of IMI when S atoms were introduced into Co-SACs for PMS activation.
View Article and Find Full Text PDFChemistry
January 2025
Manchester Interdisciplinary Biocentre: The University of Manchester Manchester Institute of Biotechnology, Biotechnology and chemical engineering, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Hypohalites are commonly generated in biological systems, mostly with functions related to defense and immune system response. These hypohalites can bind to metal centers and are known for their strong oxidizing properties that play crucial roles in various biological processes. Herein, we report the synthesis, characterization and reactivity of novel biomimetic Ru(III)-hypochlorite complexes and focus the work on the electronic effects associated with the incorporation of methyl groups in a pentadentate ligand framework in an asymmetric fashion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!