Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733750PMC
http://dx.doi.org/10.1016/j.jacbts.2024.10.004DOI Listing

Publication Analysis

Top Keywords

miniature implantable
4
implantable left atrial/ventricular
4
left atrial/ventricular pump
4
pump treat
4
treat symptoms
4
symptoms heart failure
4
heart failure preserved
4
preserved ejection
4
ejection fraction
4
fraction novel
4

Similar Publications

Millimeter-scale radioluminescent power for electronic sensors.

iScience

January 2025

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.

The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.

View Article and Find Full Text PDF

The design and characterisation of a novel dual-band implantable antenna with compact size is presented in this research. The antenna, which is [Formula: see text] in size and operates at two critical frequencies-0.954 GHz in the UHF band and 2.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.

View Article and Find Full Text PDF

Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.

Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!