Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal. Hydrocyclones were utilized for physical selection. Simulation results and experimental observations agreed for soluble chemical oxygen demand, nitrogen, and phosphorus removals, as well as mixed liquor concentration and characteristics. The model outputs demonstrated that suspended biomass was responsible for most of the transformations in the bioreactor, but LBAs contributed importantly to P accumulation as polyphosphate. The simulated LBAs accumulated a higher density of phosphorus-storing bacteria, polyphosphate, and total- and protein-extracellular polymeric substances (EPS), particularly near their core. Protein-EPS accumulated near the substratum because protein-EPS hydrolyzed more slowly than carbohydrate-EPS, while the SRT in each layer increased from the surface layer to the layer adjacent to the LBA core. PRACTITIONER POINTS: Combined models well represented observed solids components in a full-scale demonstration train as A2O with S2EBPR. Simulations described aerobic-granule structure and function consistent with what is known about aerobic granules in BNR processes. Suspended biomass dominated most of the simulated transformation rates, but the LBAs accumulated ~2000 mg P/L as polyphosphosphate. The simulated aerobic granules did not intensify WWT overall but should have improved the net solids-settling characteristics. Aerobic granules had more EPS than the suspended biomass and protein-EPS accumulated inside the LBA by slower hydrolysis kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.11157DOI Listing

Publication Analysis

Top Keywords

suspended biomass
20
aerobic granules
16
continuously flowing
8
flowing wastewater-treatment
8
wastewater-treatment processes
8
physical selection
8
lbas suspended
8
full-scale demonstration
8
demonstration train
8
lbas accumulated
8

Similar Publications

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

Erhai Lake, a vital drinking water source for Dali, a highland agricultural city, faces potential contamination from pesticide residues, yet limited studies have assessed their distribution and impacts. This study investigates the occurrence, transport, partitioning, and ecological risks of pesticides in the lake's dissolved phase (DP), suspended particulate matter (SPM), and sediment (SD) samples collected from 22 sites across different seasons. The results showed significant temporal variations across different media, with spatial variations driven by crop-related patterns.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.

View Article and Find Full Text PDF

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!