Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.b.23284 | DOI Listing |
J Exp Zool B Mol Dev Evol
January 2025
Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Tübingen, Germany.
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance.
View Article and Find Full Text PDFEcol Lett
February 2024
Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
Species coexistence in ecological communities is a central feature of biodiversity. Different concepts, i.e.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2022
Max Planck Institute for Biology, Tübingen. Department for Integrative Evolutionary Biology, Tübingen, Germany.
Resource competition has driven the evolution of novel polyphenisms in numerous organisms, enhancing fitness in constantly changing environmental conditions. In natural communities, the myriad interactions among diverse species are difficult to disentangle, but the multidimensional microscopic environment of a decaying insect teeming with bacteria and fighting nematodes provides pliable systems to investigate. Necromenic nematodes of the family Diplogastridae live on beetles worldwide, innocuously waiting for their hosts' deaths to feast on the blooming bacteria.
View Article and Find Full Text PDFSci Adv
August 2021
Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany.
Resource polyphenisms, where single genotypes produce alternative feeding strategies in response to changing environments, are thought to be facilitators of evolutionary novelty. However, understanding the interplay between environment, morphology, and behavior and its significance is complex. We explore a radiation of nematodes with discrete polyphenic mouth forms and associated microbivorous versus cannibalistic traits.
View Article and Find Full Text PDFEnviron Microbiol
September 2021
Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany.
Cross-kingdom interactions involve dynamic processes that shape terrestrial ecosystems and represent striking examples of co-evolution. The multifaceted relationships of entomopathogenic nematodes with their insect hosts and symbiotic bacteria are well-studied cases of co-evolution and pathogenicity. In contrast, microbial interactions in soil after the natural death of insects and other invertebrates are minimally understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!