Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery. The K metric assumes that the recovery of POT is to be controlled by exposure to pO. This results in a counterintuitively slow estimated recovery after exposure to low pO. Similarly, K overestimates POT during intermittent hyperoxic exposures. We used results from previous studies to train the parameters of a new ESOT recovery model. The predicted recovery of ESOT (ESOT) after initial hyperoxic exposure (ESOT) of duration t (h) and recovery time t (h) can be calculated as ESOT=ESOT · e with f=0.439 · t · 0.906. For intermittent exposures, the function ESOT(n)=(n · a · ln(b · n+1)+c) · t · pO will approximate POT (ESOT(n)) after n sessions of pO (atm) for time t (min) in each cycle. Parameters a, b, and c are specific for each cycling pattern. These ESOT functions will better predict the development of POT during intermittent hyperoxic exposures as well as recovery after a broader range of continuous hyperoxic exposures than K. We recommend limiting hyperoxic exposures in surface-oriented diving to ESOT=660, 500, and 450 for a maximum of one, five, and seven consecutive days, respectively. A minimum of 48 hours of recovery should follow. These limits can probably be relaxed for intermittent exposures.
Download full-text PDF |
Source |
---|
Respir Res
January 2025
Chiesi Farmaceutici, R&D Department, Parma, Italy.
Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.
View Article and Find Full Text PDFUndersea Hyperb Med
January 2025
Hyperbaric and Tissue Viability Unit, Gozo General Hospital, Malta.
Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery.
View Article and Find Full Text PDFJ Appl Physiol (1985)
December 2024
Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Ophthalmology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan.
Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP.
View Article and Find Full Text PDFDiving Hyperb Med
December 2024
Department of Pathology, Helsinki University, Helsinki, Finland.
Introduction: A 54-year-old, previously healthy Caucasian male diver was on a 22-day liveaboard diving holiday. During this time, he performed 75 open-circuit dives, of which 72 were with enriched air nitrox. All dives were within recreational length and depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!