Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Published: January 2025

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated. Then the threshold dynamic of the model is explored by some techniques including the theory of uniform persistence, internally chain transitive sets, and so on. Subsequently, the sensitivity analysis of parameters associated with the basic reproduction number is implemented. According to the temporal and spatial overlapping relationship between wild blue-winged ducks and poultry in North America, the effect of this relationship on the characteristic of spatial-temporal distribution of the viruses is well studied. Additionally, the risk of virus transmission from wild birds to poultry and humans is evaluated. The main results highlight that the basic reproduction number is more significantly affected by the parameters related to wild birds. Interestingly, the model output regarding the spatial distribution of poultry infections is consistent with the actual findings. Moreover, the risk of virus spillover from wild birds into poultry and humans varies with wild bird behavior and has a more substantial impact on poultry. Throughout this study, the critical risk points in the transmission process are identified, providing a theoretical basis for the prevention and control of avian influenza.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-024-02181-xDOI Listing

Publication Analysis

Top Keywords

wild birds
28
avian influenza
16
birds poultry
12
poultry humans
12
basic reproduction
12
reproduction number
12
wild
9
migratory behavior
8
risk virus
8
birds
7

Similar Publications

Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

January 2025

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.

View Article and Find Full Text PDF

Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus.

View Article and Find Full Text PDF

Ecological Drivers of Evolution of Swine Influenza in the United States: A Review.

Emerg Microbes Infect

January 2025

Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO 652011, USA.

Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades.

View Article and Find Full Text PDF

Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus.

Emerg Microbes Infect

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.

The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.

View Article and Find Full Text PDF

Urbanization enhances body condition, but not innate immune defences, in a common waterbird.

R Soc Open Sci

January 2025

Department of Biodiversity Studies and Bioeducation, University of Lodz, Faculty of Biology and Environmental Protection, Banacha 1/3, Lodz 90-237, Poland.

There is a growing body of evidence that urbanization can affect body condition and immune function in wild birds, although these effects may be complex and taxa-specific. Here, we assessed the effects of urbanization on body condition (size-corrected body mass and haemoglobin concentration) and innate immune defences (haemolysis-haemagglutination assay, haptoglobin concentration and bacterial killing assay) in 136 Eurasian coots () from three urban and three non-urban populations across Poland. We also quantified the heterophil to lymphocyte ratio to control for the potential effect of physiological stress on immune defences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!