The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype. However, a clear hypothesis on the mechanisms responsible for this phenotypic skewing is still lacking. We assumed that the biphasic nature of these entities represents a unique model to investigate the relationships between genetic alterations and their phenotypic manifestations. In this study we show that in HGGs with PNC features both components are highly enriched in genetic alterations directly causing cell cycle deregulation (RB inactivation or CDK4 amplification) and p53 pathway inactivation (TP53 mutations or MDM2/4 amplification). However, the PNC component displays further upregulation of transcriptional pathways associated with proliferative activity, including overexpression of MYC target genes. Notably, the PNC phenotype relies on the expression of EBF3, an early neurogenic transcription factor, which is directly controlled by MYC transcription factors in accessible chromatin sites. Overall our findings indicate that the concomitant presence of genetic alterations, impinging on both cell cycle and p53 pathway control, strongly predisposes GBM to develop a concomitant poorly differentiated primitive phenotype depending on MYC-driven EBF3 transcription in a subset of glioma stem-like progenitor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-025-02845-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!