Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method. The intrinsic connection between different nitrogen configurations (pyridinic N, pyrrolic N, and graphitic N) in N/C nanozymes and the oxidase-like performance are experimentally investigated. The results confirm pyridinic N is the active nitrogen species in N/C nanozymes for enhanced oxidase-like activity. Theoretical calculations further reveal the potential regulatory mechanism is pyridinic N can increase the local charge density of neighboring carbon atoms and accelerate the adsorption and activation of molecular oxygen. Notably, the optimized N/C nanozyme with the highest pyridinic N ratio presents impressive oxidase-like performance, surpassing most of the previously reported oxidase-like materials. Moreover, the optimized N/C nanozyme exhibits excellent antibacterial properties and can be easily incorporated into common medical and hygiene products to give them spontaneous antibacterial properties. The work will facilitate the rational design of carbon nanozymes with high-performance oxidase-like activity for applications in the antibacterial field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202411273 | DOI Listing |
Small
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method.
View Article and Find Full Text PDFSmall
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA.
Total antioxidant capacity (TAC) is an important indicator for assessing the merit of natural plants and foods. Herein, a visual TAC assay is developed based on the oxidase-like activity of nitrogen-doped carbon nanotubes loaded with Fe nanoparticles (FeNPs@NCNT), which is prepared via high-temperature pyrolysis of metal-organic framework precursors and can catalyze the oxidation of colorless -phenylenediamine (OPD) to colored 2,3-diaminophenazine (DAP). The addition of antioxidants (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!