This investigation looked at the ameliorative role of camel whey protein hydrolysates-diet (PH) in Oreochromis niloticus stocked under alkaline conditions. One hundred sixty fish (16.02 ± 0.14 g) were allocated equally into four groups with four replications for 30 days. The first (control) and second (alkaline) groups were fed basal diets and maintained in fresh and alkaline water, respectively. The third and fourth groups were fed on a PH diet (basal diet containing 75 g PH/kg) and maintained in fresh water and alkaline water, respectively. The hematology, immune-antioxidant indices, immune-regulatory genes, histopathological investigation of the spleen, and resistance to Aeromonas sobria were investigated. The results showed that the alkaline condition induced hematological disorders (lowered red blood cells, hemoglobin, packed cell volume, and white blood cell count) and immunosuppression (lowered phagocytic activity and index, lysozyme, nitric oxide, and complement 3) in the exposed fish. Alkaline exposure induced oxidative stress through elevation of the malondialdehyde and reduction in the antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione S-reductase, and reduced glutathione). The immune modulatory genes (tolls like receptor-5, interleukin-1beta, interleukin-6, interleukin-8, interleukin-10, interleukin-17, nuclear factor kappa beta, and tumor necrosis factor-alpha) were down-regulated by exposure to alkaline conditions. The microscopic section of the spleen of the fish subjected to alkaline conditions showed notable hyperplasia of the melanomacrophage centers, besides vascular congestion, endothelial cell hypertrophy, and mild hypercellularity in the erythroid and lymphoid elements. In addition, few sections manifested more pronounced erythroid hyperplasia than the lymphoid one. The survival of the fish subjected to alkaline conditions was reduced during the A. sobria challenge. Feeding on a PH diet, the hematology was restored and the immune-antioxidant functions were modulated. Modulation of the immune-regulatory genes and increased survivability of the alkaline-exposed fish were noticed when fed on the PH diet. Consequently, we can recommend enriching the Nile tilapia diet with a 75 g PH/kg diet especially when reared under alkaline conditions to support the immune functions of the fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11259-024-10637-0 | DOI Listing |
Braz J Microbiol
January 2025
Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.
Proteases are hydrolases that act on peptide bonds, releasing amino acids and/or oligopeptides, and are involved in essential functions in all organisms. They represent an important segment of the global enzyme market, with applications in the food, leather, detergent, and pharmaceutical industries. Depending on their industrial use, proteases should exhibit high activity under extreme conditions, such as low temperatures, e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Donghua University, No.2999, North Renmin Road, Songjiang District, Shanghai, CHINA.
Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Geography and Environment, Shandong Normal University, Jinan, China.
Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M-M) with the C grass Melilotus officinalis and the C grass Setaria viridis through greenhouse experiments.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Marine and Environmental Science, Tianjin University of Science and Technology, Tianjin 300457, China.
Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!