Diverse microtubule-binding repeats regulate TPX2 activities at distinct locations within the spindle.

J Cell Biol

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.

Published: March 2025

TPX2 is an elongated molecule containing multiple α-helical repeats. It stabilizes microtubules (MTs), promotes MT nucleation, and is essential for spindle assembly. However, the molecular basis of how TPX2 performs these functions remains elusive. Here, we systematically characterized the MT-binding activities of all TPX2 modules individually and in combinations and investigated their respective contributions both in vitro and in cells. We show that TPX2 contains α-helical repeats with opposite preferences for "extended" and "compacted" tubulin dimer spacing, and their distinct combinations produce divergent outcomes, making TPX2 activity highly robust yet tunable. Importantly, a repeat group at the C terminus, R8-9, is the key determinant of the TPX2 function. It stabilizes MTs by promoting rescues in vitro and is critical in spindle assembly. We propose a model where TPX2 activities are spatially regulated via its diverse MT-binding repeats to accommodate its varied functions in distinct locations within the spindle. Furthermore, we reveal a synergy between TPX2 and HURP in stabilizing spindle MTs.

Download full-text PDF

Source
http://dx.doi.org/10.1083/jcb.202404025DOI Listing

Publication Analysis

Top Keywords

tpx2
9
tpx2 activities
8
distinct locations
8
locations spindle
8
α-helical repeats
8
spindle assembly
8
spindle
5
diverse microtubule-binding
4
repeats
4
microtubule-binding repeats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!