Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Published: January 2025

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma. Placode and bud stages are morphologically similar with other ectodermal appendages like the hair follicle, reflecting the mammary gland's assumed evolutionary origin from an ancestral hair follicle-associated glandular unit. The shared features extend to signalling cascades such as the Wnt/β-catenin, fibroblast growth factor (Fgf), and ectodysplasin (Eda) pathways, while pathways unique to mammary gland include parathyroid hormone-like hormone (Pthlh) signalling and Hedgehog activity suppression. Mammary gland branching is highly non-stereotypic, achieved by the dynamic use of two distinct modes of branching: tip bifurcation and side branching and stochastic branch point formation. The cellular mechanisms driving the initial morphogenetic steps are slowly beginning to be unravelled. During placode and bud stages, mammary primordium predominantly grows through cell influx, while sprouting correlates with heightened proliferation. Branch elongation is driven by directional cell migration combined with differential cell motility and proliferation supplying the reservoir of migratory cells, whereas a bifurcating tip is associated with localized repression of the cell cycle and cell motility. Numerous similarities exist between embryonic programs and breast tumorigenesis, spanning cellular plasticity, epithelial-stromal interactions, and molecular regulators. Understanding embryonic mammogenesis may provide insights into how normal developmental processes can go awry, leading to malignancy, or how they can be reversed to prevent cancer progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-70875-6_2DOI Listing

Publication Analysis

Top Keywords

mammary gland
16
placode bud
12
embryonic mammary
8
mammary
8
bud stages
8
cell motility
8
cell
5
embryonic
4
gland
4
gland morphogenesis
4

Similar Publications

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).

View Article and Find Full Text PDF

Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.

View Article and Find Full Text PDF

Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g.

View Article and Find Full Text PDF

Resveratrol Alleviates NEFA-Induced Oxidative Damage in Bovine Mammary Epithelial Cells by Restoring Mitochondrial Function.

Animals (Basel)

January 2025

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

In periparturient dairy cows, high non-esterified fatty acids (NEFAs) caused by a severe negative energy balance induce oxidative stress and metabolic dysfunction, which pose a severe challenge to the dairy industry. Resveratrol (RES) is a polyphenolic compound with antioxidant, anti-inflammatory and multiple other physiological effects. However, its effect on oxidative damage triggered by NEFAs in bovine mammary epithelial cells is rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!