A dozen predicted SiGe alloys with low enthalpies and strong absorption of sunlight for photovoltaic applications.

Phys Chem Chem Phys

College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, People's Republic of China.

Published: January 2025

Silicon germanium alloy materials have promising potential applications in the optoelectronic and photovoltaic industries due to their good electronic properties. However, due to the inherent brittleness of semiconductor materials, they are prone to rupturing under harsh working environments, such as high stress or high temperature. Here, we conducted a systematic search for silicon germanium alloy structures using a random sampling strategy, in combination with group theory and graph theory (RG), and 12 stable SiGe structures in 2-8 stacking orders were predicted. All 12 stable SiGe crystals exhibit a popular bandwidth of 1.06-1.19 eV, approaching the optimal Shockley Queisser limit (≈1.4 eV). Among these, 6 structures showed quasi-direct band gaps. Considering their potential photovoltaic applications, we systematically studied the changes in their enthalpy, stability, mechanical stability (elastic moduli), lattice parameters, band structures, and light absorption under a stress load of up to 20 GPa. These new SiGe crystals featured relatively low enthalpies (even as low as 0.009 eV per atom), and good stability and mechanical properties. In addition, the absorption spectra of these materials demonstrated a high absorption intensity for the solar spectrum that was approximately 3 times higher than that of conventional diamond silicon, even under a 20 GPa stress. The present study uses the predicted 2-8H SiGe to provide new insights into the photovoltaic applications of SiGe alloy structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03927kDOI Listing

Publication Analysis

Top Keywords

photovoltaic applications
12
low enthalpies
8
silicon germanium
8
germanium alloy
8
alloy structures
8
stable sige
8
sige crystals
8
stability mechanical
8
sige
6
structures
5

Similar Publications

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.

View Article and Find Full Text PDF

Millimeter-scale radioluminescent power for electronic sensors.

iScience

January 2025

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.

The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.

View Article and Find Full Text PDF

Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.

View Article and Find Full Text PDF

The rapid proliferation of internet-connected devices has transformed our daily habits prompting a shift towards greater sustainability in renewable energy for indoor applications. Among the various technologies available for obtaining energy in indoor conditions, Dye-Sensitized Solar Cells (DSSCs) stand out as the most promising due to their ability to efficiently convert ambient light into usable electricity. This study explores how the optimal matching of the UV-Vis absorption spectra of dyes commonly used in DSSCs with the emission profiles of indoor lamps allows for the enhanced efficiency of DSSC under indoor lighting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!