The dysregulation of matrix metalloproteinases (MMPs) in skin cutaneous melanoma (SKCM) represents a critical aspect of tumorigenesis. In this study, we investigated the diagnostic, prognostic, and therapeutic aspects of the MMPs in SKCM. Thirteen SKCM cell lines and seven normal skin cell lines were cultured under standard conditions for experimental analyses. RNA and DNA were extracted, followed by RT-qPCR to assess MMP expression and promoter methylation analysis to determine methylation levels. Functional assays, including cell proliferation, colony formation, and wound healing, were conducted post-MMP7 knockdown using siRNA in A375 cells. Databases like GEPIA2, HPA, MEXPRESS, and miRNet were employed for expression, survival, methylation, and miRNA-mRNA network analyses. We investigated the expression and promoter methylation landscape of MMPs in SKCM cell lines, revealing significant (p-value < 0.05) up-regulation of MMP1, MMP7, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14, and MMP25, alongside down-regulation of MMP2, MMP3, and MMP21. Furthermore, our analysis demonstrated a significant (p-value < 0.05) inverse correlation between MMP expression levels and promoter methylation status, suggesting a potential regulatory role of DNA methylation in MMP dysregulation. Notably, MMP7, MMP11, and MMP14 exhibited significant (p-value < 0.05) associations with the overall survival of SKCM patients, emphasizing their prognostic significance. Additionally, Receiver operating characteristic (ROC) curve analysis highlighted the significant (p-value < 0.05) diagnostic potential of MMP7, MMP11, and MMP14 in distinguishing SKCM from normal individuals. Subsequent validation across multiple cohorts confirmed significant (p-value < 0.05) elevated MMP expression levels in SKCM tissues, particularly in advanced disease stages, further emphasizing their role in tumor progression. Furthermore, we elucidated potential regulatory pathways involving miR-22-3p, which targets MMP7, MMP11, and MMP14 genes in SKCM. Our findings also revealed associations between MMP expression and immune modulation, drug sensitivity, and functional states of SKCM cells. Lastly, MMP7 knockdown in A375 cells significantly significant (p-value < 0.05) impacted several characteristics, including cell proliferation, colony formation, and wound healing. Our findings highlight the diagnostic, prognostic, and therapeutic potential of MMP7, MMP11, and MMP14 in SKCM. These MMPs could serve as biomarkers for early detection and targets for therapy. Future efforts should focus on preclinical and clinical validation to translate these insights into personalized diagnostic and therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-85887-2 | DOI Listing |
Am Fam Physician
January 2025
University of Florida College of Medicine, Gainesville.
Jaundice is an indication of hyperbilirubinemia and is caused by derangements in bilirubin metabolism. It is typically apparent when serum bilirubin levels exceed 3 mg/dL and can indicate serious underlying disease of the liver or biliary tract. A comprehensive medical history, review of systems, and physical examination are essential for differentiating potential causes such as alcoholic liver disease, biliary strictures, choledocholithiasis, drug-induced liver injury, hemolysis, or hepatitis.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America.
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.
FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.
View Article and Find Full Text PDFPLoS One
January 2025
Departments of Microbiology, College of Medicine, Ewha Womans University, Seoul, Korea.
Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!