This paper presents a novel method for improving semantic segmentation performance in computer vision tasks. Our approach utilizes an enhanced UNet architecture that leverages an improved ResNet50 backbone. We replace the last layer of ResNet50 with deformable convolution to enhance feature representation. Additionally, we incorporate an attention mechanism, specifically ECA-ASPP (Attention Spatial Pyramid Pooling), in the encoding path of UNet to capture multi-scale contextual information effectively. In the decoding path of UNet, we explore the use of attention mechanisms after concatenating low-level features with high-level features. Specifically, we investigate two types of attention mechanisms: ECA (Efficient Channel Attention) and LKA (Large Kernel Attention). Our experiments demonstrate that incorporating attention after concatenation improves segmentation accuracy. Furthermore, we compare the performance of ECA and LKA modules in the decoder path. The results indicate that the LKA module outperforms the ECA module. This finding highlights the importance of exploring different attention mechanisms and their impact on segmentation performance. To evaluate the effectiveness of the proposed method, we conduct experiments on benchmark datasets, including Stanford and Cityscapes, as well as the newly introduced WildPASS and DensPASS datasets. Based on our experiments, the proposed method achieved state-of-the-art results including mIoU 85.79 and 82.25 for the Stanford dataset, and the Cityscapes dataset, respectively. The results demonstrate that our proposed method performs well on these datasets, achieving state-of-the-art results with high segmentation accuracy.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305561PLOS

Publication Analysis

Top Keywords

attention mechanisms
12
proposed method
12
attention
9
semantic segmentation
8
enhanced unet
8
attention mechanism
8
deformable convolution
8
segmentation performance
8
path unet
8
segmentation accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!