Matrix effects pose a significant challenge in food analysis for the quantitative analysis of complex food samples. Herein, a novel magnetic covalent organic framework nanocomposite and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction-based stable isotope labeling (SIL) method were presented for highly selective and sensitive detection of steroid hormones in food samples using HPLC-MS/MS. The nanocomposite, FeO@TAPB-COF, with a core-shell structure exhibited high adsorption capacities for steroid hormones. Combined with a SIL method based on the CuAAC click reaction, steroid hormones were accurately quantified in food samples with high sensitivity and selectivity. A pair of SIL agents, N-(2-azidoethyl)aniline (d-NAEA) and d-N-(2-azidoethyl)aniline (d-NAEA), was synthesized to label steroid hormones in the samples and standard solutions, respectively. The labeling reaction is highly specific, and the formation of the derivatives is easily ionized by MS, thus overcoming matrix effects. More surprisingly, the ionization efficiency of steroid hormones increased by a factor of 4 to 56, with matrix effects ranging from 87.3 to 99.3%. Under optimal conditions, this method exhibited a low limit of detection (LOD) ranging from 0.1 to 2.6 μg L and overcame the interference of matrix effects for trace-level steroid hormone analysis in foodstuffs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05727-6DOI Listing

Publication Analysis

Top Keywords

steroid hormones
24
matrix effects
16
food samples
12
detection steroid
8
novel magnetic
8
cuaac click
8
sil method
8
steroid
7
hormones
6
efficient adsorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!