Arylacetic acid equivalents bearing a pyridine group undergo C(sp)-H/C(sp)-H cross coupling with diverse methylarenes in the presence of a copper based catalyst system. The reaction proceeds the formation of α-carbonyl radicals giving access to α,β-diarylpropionic acids. Preliminary study suggests that the catalyst system is capable of transforming arylbenzyl ketones into 1,2,3-triaryl ketones.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc06801gDOI Listing

Publication Analysis

Top Keywords

arylacetic acid
8
acid equivalents
8
α-carbonyl radicals
8
catalyst system
8
copper catalyzed
4
catalyzed csp-h/csp-h
4
csp-h/csp-h cross-coupling
4
cross-coupling arylacetic
4
equivalents methylarenes
4
methylarenes α-carbonyl
4

Similar Publications

Hydrocarbon biodegradation processes at a historic oil production site - A signature metabolite study.

Sci Total Environ

January 2025

Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany. Electronic address:

Decades of research demonstrated that microbes can remediate petroleum-contaminated environments through biodegradation of hydrocarbons. Recent studies have applied signature metabolite analysis to investigate hydrocarbon-contaminated sites, focusing primarily on aquifer systems and metabolites of relatively water-soluble monoaromatic hydrocarbons. However, the number of studies involving non-targeted analysis and identification of individual metabolites in environmental samples is limited.

View Article and Find Full Text PDF

Arylacetic acid equivalents bearing a pyridine group undergo C(sp)-H/C(sp)-H cross coupling with diverse methylarenes in the presence of a copper based catalyst system. The reaction proceeds the formation of α-carbonyl radicals giving access to α,β-diarylpropionic acids. Preliminary study suggests that the catalyst system is capable of transforming arylbenzyl ketones into 1,2,3-triaryl ketones.

View Article and Find Full Text PDF

The protonolysis and redox reactivity of a Ce(IV) carbonate complex supported by the Kläui tripodal ligand [(η-CH)Co{P(O)(OEt)}] (L) have been studied. Whereas treatment of [Ce(L)(CO)] () with RCOH afforded [Ce(L)(RCO)] ( = Me (), Ph (), 2-NOCH ()), the reaction of with PhCHCOH resulted in formation of a mixture of Ce(IV) () and Ce(III) () carboxylate species. In benzene in the dark, was slowly converted into via Ce(IV)-O(carboxylate) homolysis.

View Article and Find Full Text PDF

The recently developed phenoplast-related polymer, poly(benzofuran--arylacetic acid), presents a versatile molecular structure containing lactone and carboxylic acid functionalities that offer significant flexibility in creating cured materials with tailored properties for diverse applications, wherein also the thermal conductivity is an important factor. This study analyses the possibility of forming amide moieties of poly(benzofuran--arylacetic acid) with diamines resulting in cross-linked products in order to control its thermal properties. The cross-linking process is achieved by utilizing three distinct diamines, 1,6-diaminohexane, -xylylenediamine, and 4,7,10-trioxa-1,13-tridecanediamine, each possessing different degrees of polarity, flexibility, and reactivity.

View Article and Find Full Text PDF

Copper-Catalyzed Radical Sulfonylation: Divergent Construction of C(sp)-Sulfonyl Bonds with Sulfonylhydrazones.

J Org Chem

November 2024

College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China.

Sulfonylhydrazones have been proven to be versatile synthetic intermediates in a panel of transformations. However, radical sulfonylation with sulfonylhydrazone as sulfonyl radical source is relatively rare. Here, we found that sulfonylhydrazone can serve as a new sulfonyl radical precursor to couple various partners such as arylacetic acids, ene-yne-ketones, and -quinone methides under copper catalysis and microwave irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!