Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test. An open-field test was used to measure motor activity. The changes in monoamines, monoamine oxidase (MAO), acetylcholinesterase (AChE), Na,K,ATPase, oxidative stress, caspase-3, and histopathology were evaluated in the cortical and hippocampal tissues of all groups. Data analysis by ANOVA revealed that BPA treatment induced motor hyperactivity and short- and long-term memory impairment. In the cortex, BPA decreased serotonin (5-HT), norepinephrine (NE), MAO, Na,K,ATPase, and nitric oxide (NO) and increased dopamine (DA), AChE, lipid peroxidation (MDA), glutathione (GSH), and caspase-3. In the hippocampus, BPA increased 5-HT, DA, NE, MAO, AChE, MDA, NO, GSH, and caspase-3 and decreased Na,K,ATPase. These neurochemical changes were accompanied by significant histopathological alterations. Taurine treatment prevented memory impairment and motor hyperactivity induced by BPA. Taurine attenuated the neurochemical changes, oxidative stress, and caspase-3 level. Taurine improved the histopathological change induced by BPA. In conclusion, taurine significantly prevented BPA-induced cognitive deficits, motor coordination impairments, neurotransmitter imbalances, histopathological alterations, oxidative stress, and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-024-03767-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!